مشخصات مقاله | |
ترجمه عنوان مقاله | VMSAGE: یک الگوریتم برنامه ریزی ماشین مجازی مبتنی بر اثر گرانشی برای رایانش ابری سبز |
عنوان انگلیسی مقاله | VMSAGE: A Virtual Machine Scheduling Algorithm based on the Gravitational Effect for Green Cloud Computing |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 41 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
3.271 در سال 2018 |
شاخص H_index | 58 در سال 2019 |
شاخص SJR | 0.726 در سال 2018 |
شناسه ISSN | 1569-190X |
شاخص Quartile (چارک) | Q1 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر |
گرایش های مرتبط | مهندسی الگوریتم و محاسبات، رایانش ابری |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | عمل و نظریه مدل سازی شبیه سازی – Simulation Modelling Practice and Theory |
دانشگاه | School of Computer Science, Nanjing University of Posts & Telecommunications, Nanjing 210003, China |
کلمات کلیدی | ماشین مجازی، الگوریتم برنامه ریزی، بهره وری انرژی، اثر گرانشی، رایانش ابری |
کلمات کلیدی انگلیسی | Virtual Machine, Scheduling Algorithm, Energy Efficiency, Gravitation Effect, Cloud Computing |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.simpat.2018.10.006 |
کد محصول | E14089 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction 2. Related work 3. VM scheduling algorithm based on the gravitational effect 4. Implementation of VMSAGE 5. Experiments and performance analysis 6. Conclusions 7. Acknowledgments References |
بخشی از متن مقاله: |
Abstract
The area of sustainable green smart computing highlights key challenges towards reducing cost and carbon dioxide emissions due to the high-energy consumption of Cloud data centres. Here, we focus on the Cloud virtual machine (VM) scheduling that is usually based on simple algorithms, e.g. VM placement on nodes with low memory usage. This approach fails to consider the actual configuration of nodes inside the server rack resulting in local overheating of Cloud data centres. To solve this, we propose a VM scheduling algorithm based on the gravitational effect, called VMSAGE, to optimize energy efficiency of Cloud computing systems. Inspired by the physical gravitation model, we define the thermal repulsion and logical gravitation factors between physical nodes and VMs. To achieve optimized VM scheduling, we propose a gravitation function that refers to the calculation of the logical quality of each VM, host and rack through the algorithm, so as to draw the attractiveness between them. Based on the concept of dimension reduction, VMSAGE conducts the two-dimensional plane target selection twice to reduce the computational cost. Additionally, VMSAGE evaluates attributes of the computer room to carry out the VM deployment. To demonstrate the effectiveness of our solution, we compare it with the Best Fit Heuristic (BFH) and the dynamic voltage and frequency scaling (DVFS) algorithms. The results indicate that our algorithm achieves 10% and 20% optimized energy consumption respectively. The experimental results highlight our contribution, in where VMSAGE can significantly reduce energy consumption rates and VM migration times. Introduction Cloud computing enables an economically promising paradigm of computation outsourcing [1]. Immense computation power and storage capacity of computing systems enable everyday Internet users to store and process largescale data on a “pay as you go” model [2]. As more users move their activities to the Cloud, the number of data centre nodes increases as well. The global data center market is estimated to reach revenues of around 174 billion by 2023, growing at a Compound Annual Growth Rate (CAGR) of approximately 4% during the forecast period1 . The demand for data centres processing capacity is expected to increase by 7 to 10 times in the next 5 years [3]. However, as the scale of Cloud data centres increases, the physical servers cause high power consumption and environ ment problems. Today, the annual power consumption of global data centres is about 3,000 tw.h, equivalent to the total power generation of 300 nuclear power plants [4]. For example, the annual power consumption of Google’s Cloud data centres is up to nearly 203,000,000 kw.h [4]. The inefficient utilization of resources causes unnecessary waste of energy. Kurnik et al. [35] show that the current under-utilization rates of many servers in data centres are around 90%. The effective virtualization of resources can be used to solve the low energy efficiency problem. |