مشخصات مقاله | |
ترجمه عنوان مقاله | انتخاب سبد سهام با حساب های ذهنی: یک مدل متوازن با ریسک گریزی درون زاد |
عنوان انگلیسی مقاله | Portfolio selection with mental accounts: An equilibrium model with endogenous risk aversion |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 18 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
2.531 در سال 2019 |
شاخص H_index | 135 در سال 2020 |
شاخص SJR | 1.599 در سال 2019 |
شناسه ISSN | 0378-4266 |
شاخص Quartile (چارک) | Q1 در سال 2019 |
مدل مفهومی | دارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | حسابداری، مدیریت، اقتصاد |
گرایش های مرتبط | حسابداری مالی، مدیریت مالی، بانکداری، اقتصاد پول و بانکداری |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | مجله بانکداری و مالی – Journal of Banking and Finance |
دانشگاه | University of Minnesota, Carlson School of Management United States |
کلمات کلیدی | انتخاب سبد سهام، حساب های ذهنی، توازن، ریسک گریزی درون زاد، مالی رفتاری، مدل واریانس میانگین |
کلمات کلیدی انگلیسی | Portfolio selection, Mental accounts, Equilibrium, Endogenous risk aversion, Behavioral finance, Mean-variance model |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.jbankfin.2019.07.019 |
کد محصول | E14132 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1. Introduction 2. The model 3. Equilibrium 4. Example 5. Conclusion Acknowledgments Appendix A. Supplementary materials Research Data References |
بخشی از متن مقاله: |
Abstract In Das et al. (2010), an agent divides his or her wealth among mental accounts that have different goals and optimal portfolios. While the moments of the distribution of asset returns are exogenous in their normative model, they are endogenous in our corresponding positive model. We obtain the following results. First, there are multiple equilibria that we parameterize by the implied risk aversion coefficient of the agent’s aggregate portfolio. Second, equilibrium asset prices and the composition of optimal portfolios within accounts depend on this coefficient. Third, altering the goal of any given account affects the composition of each portfolio. Introduction Das et al. (2010, DMSS) combine certain aspects of behavioral and mean-variance (MV) portfolio selection models. Like Shefrin and Statman (2000), DMSS consider an agent who divides his or her wealth among mental accounts (hereafter ‘accounts’) with different goals such as retirement or bequests.1 For each account, short sales are allowed and the agent maximizes its expected return subject to: (1) fully investing the wealth assigned to it; and (2) the probability of its return being less than or equal to some threshold return (e.g., −20%) not exceeding some threshold probability (e.g., 5%).2 The threshold return and threshold probability (hereafter ‘thresholds’) can vary across accounts to reflect different goals. Assuming that a risk-free asset is absent and risky asset returns have a multivariate normal distribution, DMSS show that optimal portfolios within accounts and the resulting aggregate portfolio are all on the MV frontier of Markowitz (1952). In their normative model, the moments of this distribution are exogenous. Our paper develops a corresponding positive model where these moments are endogenous in four types of economies. The first is a single-agent economy where the agent has an objective function defined over the expected value and variance of his or her future wealth as well as a single account (hereafter ‘MV agent’). The second is also a single-agent economy but the agent has an objective function as in DMSS (hereafter ‘DMSS agent’) and a single account. The third is a single-agent economy with a DMSS agent but with multiple accounts. The fourth is a two-agent economy with an MV agent (who has a single account) and a DMSS agent who has multiple accounts |