مشخصات مقاله | |
ترجمه عنوان مقاله | کمک ذخیره ساری حجمی از الکتریسیته به باد و خورشید در جایگزینی تولید برق غیر قابل توزیع |
عنوان انگلیسی مقاله | Does bulk electricity storage assist wind and solar in replacing dispatchable power production? |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 17 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.669 در سال 2019 |
شاخص H_index | 120 در سال 2020 |
شاخص SJR | 2.003 در سال 2019 |
شناسه ISSN | 0140-9883 |
شاخص Quartile (چارک) | Q1 در سال 2019 |
مدل مفهومی | دارد |
پرسشنامه | ندارد |
متغیر | دارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی برق، مهندسی انرژی، علوم اقتصادی |
گرایش های مرتبط | تولید، انتقال و توزیع، انرژی های تجدید پذیر، فناوری های انرژی، اقتصاد انرژی |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | اقتصاد انرژی – Energy Economics |
دانشگاه | University of Geneva, Switzerland |
کلمات کلیدی | تاثیر ذخیره حجمی بر الکتریسیته، سیستم ها، گسترش برق خورشیدی و بادی، انتشارات حاصل از تولید الکتریسیته، کربن زدایی منبع تغذیه |
کلمات کلیدی انگلیسی | Impact of bulk storage on electricity, systems, Expansion of wind and solar power, Emissions from electricity production, De-carbonization of power supply |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.eneco.2019.104495 |
کد محصول | E14157 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1. Introduction 2. Methods 3. Results 4. Limitations 5. Conclusion Acknowledgments Appendix A. Supplementary data References |
بخشی از متن مقاله: |
Abstract This paper discusses the impact of bulk electric storage on the production from dispatchable power plants for rising variable renewable electricity shares. Two complementary optimization frameworks are used to represent power systems with a varying degree of complexity. The corresponding models approximate the wholesale electricity market, combined with the rational retirement of dispatchable capacity. Two different generic storage technologies are introduced exogenously to assess their impact on the system. The analysis covers two countries: France, where the power supply’s large nuclear share allows for the discussion of storage impact on a single generator type; and Germany, whose diverse power supply structure enables storage interactions with multiple electricity generators. In the most general case, additional storage capacity increases dispatchable power production (e.g. nuclear, coal) for small wind and solar shares, i.e. it compensates the replacement induced by renewable energies. For larger variable renewable electricity volumes, it actively contributes to dispatchable power replacement. In a diverse power system, this results in storage-induced sequential mutual replacements of power generation from different plant types, as wind and solar capacities are increased. This mechanism is strongly dependent on the technical parameters of the storage assets. As a result, the impact of different storage types can have opposite signs under certain circumstances. The influence of CO2 emission prices, wind and solar profile shapes, and power plant ramping costs is discussed. Introduction Todecarbonize the electricity sector, windandphotovoltaic (PV) power are likely to cover increasing shares of future electricity production (Creutzig et al., 2017; Luderer et al., 2017). To cope with the inherently variable nature of these renewable resources, their integration requires additional system flexibility (International Energy Agency, 2018). This flexibility is necessary in order to follow steeper loadramps (Huber et al., 2014),tomanage short-termpowerfluctuations (International Energy Agency, 2018), and to counteract the market value erosion of resources with inflexible profiles (Hirth, 2013). Ultimately, very high shares of variable renewable electricity (VRE) require the system to absorb otherwise curtailed peak generation (Denholm and Hand, 2011; Després et al., 2017). The future needs for additional flexibility of supply and demand can be satisfied in a multitude of ways, relying both on improvements of the legacy system (such as power plant upgrades (International Energy Agency, 2018)) and on dedicated measures, including storage installation and cross-sector coupling (Lund et al., 2015). Among these options, electricity-to-electricity storage stands out as especially versatile due its ability to provide a multitude of (e.g. ancillary) services and due to its lack of scalability constraints (with the notable exception of pumped hydro storage—PHS) (Fitzgerald et al., 2015; Palizban and Kauhaniemi, 2016). This is in addition to several more technology-specific advantages like estimated low capital costs per energy capacity (e.g. compressed air energy storage (Lazard, 2016)), pronounced anticipated cost decreases (e.g. battery technologies (Schmidt et al., 2017)), very fast deployment time, modularity, and increasing maturity due to rapidly accelerating worldwide use (batteries (REN21, 2018; Tortora, 2014)). |