مقاله انگلیسی رایگان در مورد تشخیص تکامل بدافزار با ماشین بردار پشتیبانی – الزویر 2020

 

مشخصات مقاله
ترجمه عنوان مقاله تشخیص تکامل بدافزار با استفاده از ماشین های بردار پشتیبانی
عنوان انگلیسی مقاله Detecting Malware Evolution Using Support Vector Machines
انتشار مقاله سال 2020
تعداد صفحات مقاله انگلیسی 25 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
5.891 در سال 2019
شاخص H_index 162 در سال 2020
شاخص SJR 1.190 در سال 2019
شناسه ISSN 0957-4174
شاخص Quartile (چارک) Q1 در سال 2019
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط مهندسی کامپیوتر
گرایش های مرتبط مهندسی نرم افزار
نوع ارائه مقاله
ژورنال
مجله  سیستم های خبره با برنامه های کاربردی – Expert Systems with Applications
دانشگاه  Department of Computer Science, San Jose State University, United States
کلمات کلیدی بدافزار، ماشین بردار پشتیبانی، تجزیه و تحلیل ویژگی، تکامل بدافزار
کلمات کلیدی انگلیسی
Malware, Support vector machine, Feature analysis, malware evolution
شناسه دیجیتال – doi
https://doi.org/10.1016/j.eswa.2019.113022
کد محصول E14205
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
1. Introduction
2. Related work
3. Design and implementation
4. Experiments and results
5. Conclusion and future work
CRediT authorship contribution statement
Declaration of Competing Interest
References

بخشی از متن مقاله:
Abstract

Malware families typically evolve over a period of time. Differences between malware samples within a single family can originate from various code modifications designed to evade detection, or changes that are made to alter the functionality of the malware itself. Thus, malware samples from the same family from different time periods can exhibit significantly different behavior. In this research, we apply feature ranking—based on linear support vector machine (SVM) weights—to identify changes within malware families. We analyze numerous malware families over extended periods of time. Our goal is to demonstrate that we can detect evolutionary changes within malware families using an automated and quantifiable machine learning based technique.

Introduction

Malware can be defined as malicious software that is designed to cause disruption, deny activity, gather private data without user consent, allow unapproved access to system resources, and similar improper behavior (Aycock, 2006). Malware detection and prevention is a high priority for governments and businesses. Building effective countermeasures to malware threats is difficult due to the complexity of modern software and networked systems. Creators of malware can take advantage of weaknesses in security mechanisms of networks and end systems. Hackers and organized criminals frequently introduce new features to enable their malware to evade detection. In addition, it is highly likely that much—if not most—new malware is written based of existing code, rather than starting from scratch (Walenstein, Venable, Hayes, Thompson, & Lakhotia, 2007). Typically, in the software development process, new software is written on top of the existing software, and in this sense, malware is no different. Thus, malware writers are inclined to reuse existing malware code and release new variants of the same malware (Aycock, 2006). For these reasons, malware can be viewed as evolving over time.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا