مشخصات مقاله | |
ترجمه عنوان مقاله | بهینه سازی مشترک طراحی تحمل محصول، برنامه فرآیند و برنامه تولید در مونتاژ چند محصول با دقت بالا |
عنوان انگلیسی مقاله | Joint optimization of product tolerance design, process plan, and production plan in high-precision multi-product assembly |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 12 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.932 در سال 2019 |
شاخص H_index | 54 در سال 2020 |
شاخص SJR | 1.592 در سال 2019 |
شناسه ISSN | 0278-6125 |
شاخص Quartile (چارک) | Q1 در سال 2019 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | دارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی صنایع |
گرایش های مرتبط | تولید صنعتی، بهینه سازی سیستم ها |
نوع ارائه مقاله |
ژورنال |
مجله | مجله سیستم های تولید – Journal of Manufacturing Systems |
دانشگاه | Hitachi Ltd., Research & Development Group, 292 Yoshida-cyo, Totsuka-ku, Yokohama-shi, Kanagawa, 244-0817, Japan |
کلمات کلیدی | مونتاژ، بهینه سازی طراحی، متحمل سازی، برنامه ریزی فرآیند، برنامه ریزی تولید |
کلمات کلیدی انگلیسی | Assembly، Design optimization، Tolerancing، Process planning، Production planning |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.jmsy.2020.01.004 |
کد محصول | E14493 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction and motivation 2. Literature review 3. Problem statement 4. Solution approach 5. Experimental evaluation 6. Discussion on practical application potential 7. Conclusions and future work Acknowledgments References |
بخشی از متن مقاله: |
Abstract
With the ever-increasing product variety faced by the manufacturing industry, investment efficiency can only be maintained by the application of multi-product assembly systems. In such systems, the product design, process planning, and production planning problems related to different products are strongly interconnected. Despite this, those interdependent decisions are typically made by different divisions of the company, by adopting a decomposed planning approach, which can easily result in excess production costs. In order to overcome this challenge, this paper proposes an integrated approach to solving the above problems, focusing on the decisions crucial for achieving the required tolerances in high-precision assembled products. The joint optimization problems related to product tolerance design and assembly resource configuration are first formulated as a mixed-integer linear program (MILP). Then, a large neighborhood search (LNS) algorithm, which combines classical mathematical programming and meta-heuristic techniques, is introduced to solve large instances of the problem. The efficiency of the method is demonstrated through an industrial case study, both in terms of computational efficiency and industrial effectiveness. Introduction and motivation In response to diversifying consumer preferences, many companies from the automotive, electronics, and consumer goods industries are forced to increase product variety [1–3]. The situation is often complicated further by the changes of the conventional manufacturer-supplier relationships, e.g., in the automotive industry, where a single supplier now serves many manufacturers. Therefore, the supplier must increase its product variety, and the demand for multi-variety production grows. As a consequence, requirements of new products often cannot be satisfied by existing manufacturing and assembly lines, and therefore, investment into new equipment is inevitable. There are also attempts to lift manufacturing constraints by introducing general purpose equipment, but excessive generalization or flexibility of equipment can also lead to low production rate and low return on investments [4]. In the conventional product development process, different phases of the process focus on different issues to be resolved: first of all, product design has to meet customer specifications by selecting appropriate design alternatives. When a product design is available, process planning is responsible for realizing the design by defining the assembly resource configurations. In the operation stage, production planning assigns products to resources over time to satisfy demand in the most efficient way. |