مشخصات مقاله | |
ترجمه عنوان مقاله | تأثیر کاهش ابعاد در انتخاب سهام با تجزیه و تحلیل خوشه ای در شرایط مختلف بازار |
عنوان انگلیسی مقاله | Effect of dimensionality reduction on stock selection with cluster analysis in different market situations |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 31 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
5.891 در سال 2019 |
شاخص H_index | 162 در سال 2020 |
شاخص SJR | 1.190 در سال 2019 |
شناسه ISSN | 0957-4174 |
شاخص Quartile (چارک) | Q1 در سال 2019 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | اقتصاد |
گرایش های مرتبط | اقتصاد مالی، توسعه اقتصادی و برنامه ریزی، برنامه ریزی سیستم های اقتصادی |
نوع ارائه مقاله |
ژورنال |
مجله | سیستم های خبره با برنامه های کاربردی – Expert Systems With Applications |
دانشگاه | School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai 200433, PR China |
کلمات کلیدی | انتخاب سهام، کاهش ابعاد، وضعیت بازار، استراتژی چرخش، یادگیری عمیق |
کلمات کلیدی انگلیسی | Stock selection، Dimensionality reduction، Market situation، Rotation strategy، Deep learning |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.eswa.2020.113226 |
کد محصول | E14296 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1- Introduction 2- Methodology 3- The effect of dimensionality reduction on stock selection with cluster analysis in different market situations 4- A stock-selection rotation strategy based on the effect of dimensionality reduction 5- Conclusions References |
بخشی از متن مقاله: |
Abstract Dimensionality reduction is inevitable in stock selection with cluster analysis. Considering relations among dimensionality reduction, noise trading, and market situations, we empirically investigate the effect of dimensionality-reduction methods–principal component analysis, stacked autoencoder, and stacked restricted Boltzmann machine–on stock selection with cluster analysis in different market situations. Based on the index fluctuation, the market is divided into sideways and trend situations. For the CSI 100 and Nikkei 225 constituent stocks, experimental results show that: (1) In sideways situations, dimensionality reduction hardly improves the performance of stock selection with cluster analysis; (2) the advantage of dimensionality reduction is mainly reflected in trend situations, but whether it is in an up or down trend depends on the market analyzed. More importantly, according to the above findings and assuming that the dimensionality-reduction effect will continue, we propose a rotation strategy with and without dimensionality reduction. The results of experiments show that the proposed rotation strategy outperforms the stock market indices as well as the stock-selection strategies based on dimensionality reduction and cluster analysis. These findings offer practical insights into how dimensionality reduction can be efficiently used for stock selection. Introduction Stock selection is a crucial issue in investment management, which determines the return of stock investments (Markowitz, 1952; Ren et al., 2017). There are various stock-selection strategies, including multi-factor models (Carvalho et al., 2010; Fama and French, 2018), momentum and contrarian strategies (Grinblatt et al., 1995; Cooper et al., 2004), style rotation strategies (Lucas et al., 2002; Ahmed et al., 2002), volatility strategies (Chong and Phillips, 2012; Hsu and Li, 2013), and behavior biases strategies (Huang et al., 2011). Among these strategies, multi-factor models are the most studied, mainly including the Fama-French three-factor model (Fama and French, 1992), the Fama-French five-factor model (Fama and French, 2017), factor models based on investor attention (Li and Yu, 2012), and factor models based on fundamental and technical analysis (Peachavanish, 2016). Investors can use these models to analyze stock characteristics from different perspectives. If stock characteristics last for a period, investors would obtain a higher benefit from analyzing stock characteristics than from random selection. |