مقاله انگلیسی رایگان در مورد شبکه عصبی مبتنی بر الگوریتم تکاملی چندمنظوره برای زمانبندی جریان کاری در محاسبات ابری – الزویر 2020

 

مشخصات مقاله
ترجمه عنوان مقاله شبکه عصبی مبتنی بر الگوریتم تکاملی چندمنظوره برای زمانبندی جریان کاری پویا در محاسبات ابری
عنوان انگلیسی مقاله Neural network based multi-objective evolutionary algorithm for dynamic workflow scheduling in cloud computing
انتشار مقاله سال 2020
تعداد صفحات مقاله انگلیسی 16 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
7.007 در سال 2019
شاخص H_index 93 در سال 2020
شاخص SJR 0.835 در سال 2019
شناسه ISSN 0167-739X
شاخص Quartile (چارک) Q1 در سال 2019
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط کامپیوتر
گرایش های مرتبط مهندسی الگوریتم ها و محاسبات، محاسبات ابری، هوش مصنوعی
نوع ارائه مقاله
ژورنال
مجله  نسل آینده سیستم های کامپیوتری – Future Generation Computer Systems
دانشگاه Computer Engineering Department, Marmara University, Istanbul, 34722, Turkey
کلمات کلیدی زمانبندی جریان کاری، نقوص منابع، تغییر تعداد اهداف، الگوریتم های تکاملی چند منظوره پویا، شبکه های عصبی
کلمات کلیدی انگلیسی Workflow scheduling، Resource failures، Changing number of objectives، Dynamic multi-objective evolutionary algorithms، Neural networks
شناسه دیجیتال – doi
https://doi.org/10.1016/j.future.2019.08.012
کد محصول E14340
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract

1- Introduction

2- Related work

3- Workflow scheduling problem in cloud computing

4- Dynamic workflow scheduling problem

5- Experimental study

6- Results and discussion

7- Conclusions

References

بخشی از متن مقاله:

Abstract

Workflow scheduling is a largely studied research topic in cloud computing, which targets to utilize cloud resources for workflow tasks by considering the objectives specified in QoS. In this paper, we model dynamic workflow scheduling problem as a dynamic multi-objective optimization problem (DMOP) where the source of dynamism is based on both resource failures and the number of objectives which may change over time. Software faults and/or hardware faults may cause the first type of dynamism. On the other hand, confronting real-life scenarios in cloud computing may change number of objectives at runtime during the execution of a workflow. In this study, we propose a prediction-based dynamic multi-objective evolutionary algorithm, called NN-DNSGA-II algorithm, by incorporating artificial neural network with the NSGA-II algorithm. Additionally, five leading non-prediction based dynamic algorithms from the literature are adapted for the dynamic workflow scheduling problem. Scheduling solutions are found by the consideration of six objectives: minimization of makespan, cost, energy and degree of imbalance; and maximization of reliability and utilization. The empirical study based on real-world applications from Pegasus workflow management system reveals that our NN-DNSGA-II algorithm significantly outperforms the other alternatives in most cases with respect to metrics used for DMOPs with unknown true Pareto-optimal front, including the number of non-dominated solutions, Schott’s spacing and Hypervolume indicator.

Introduction

Cloud computing is a large-scale heterogeneous and distributed computing infrastructure for the scientific and commercial communities, which provides high quality and low cost services with minimal hardware investments. Infrastructure-asa-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-aService (SaaS) are among the most popular service layers that cloud computing delivers over the internet. In this paper, we will mostly refer to IaaS, where the customers can access hardware resources, on which the applications can be deployed. Workflows are the common techniques to construct large scale compute and data intensive applications from different research domains. An application workflow is modelled with a directed acyclic graph where the nodes of the graph are tasks that are interconnected via compute or data resources. The workflow scheduling problem in cloud computing aims to map the tasks of a given application onto available resources [1–4]. It is an NP-complete problem [1], in which the orchestration of task executions is the main concern in order to optimize the objectives specified in QoS.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا