مشخصات مقاله | |
ترجمه عنوان مقاله | مطالعه عددی عملکرد لرزه ای قاب های فولادی پیش ساخته با بست های اتلاف انرژی مرکزگرا |
عنوان انگلیسی مقاله | Numerical study on seismic performance of prefabricated steel frames with recentering energy dissipative braces |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 12 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
3.604 در سال 2019 |
شاخص H_index | 114 در سال 2020 |
شاخص SJR | 1.628 در سال 2019 |
شناسه ISSN | 0141-0296 |
شاخص Quartile (چارک) | Q1 در سال 2019 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی عمران |
گرایش های مرتبط | سازه، زلزله |
نوع ارائه مقاله |
ژورنال |
مجله | سازه های مهندسی – Engineering Structures |
دانشگاه | School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China |
کلمات کلیدی | سازه های پیش ساخته، بست های اتلاف انرژی مرکزگرا، بست اتلاف انرژی خود محور، پاسخ هیسترتیک، تحلیل تاریخچه زمانی |
کلمات کلیدی انگلیسی | Prefabricated structure، RCED brace، SCED brace، Hysteretic response، Time history analysis |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.engstruct.2020.110223 |
کد محصول | E14518 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction 2. Description of the experimental test on the RCED braced frame 3. Quasistatic analysis of the tested RCED braced frames 4. Nonlinear time history analyses of multistory braced frames 5. Conclusions Declaration of Competing Interest Acknowledgement References |
بخشی از متن مقاله: |
Abstract
The application and research of prefabricated steel structures (PPSs) have developed rapidly in China. To improve the seismic resistance of PPSs, alternative bracing systems have been developed. The seismic performance of steel frames with recentering energy dissipative (RCED) braces is investigated numerically through quasistatic and nonlinear time history analyses. A one-bay braced frame model was first created in ABAQUS and calibrated by previous experimental tests. Subsequently, a comparative study on the dynamic performances of the multistory steel frames with RCED braces and self-centering energy dissipative braces was conducted. Six far-field earthquake records were adopted, i.e., Northridge, Imperial Valley, Kobe, San Fernando, Loma Prieta, and Kocaeli, Turkey. Finally, a parametric study was performed to investigate the effects of tendon diameter and pretension magnitude of high-strength bolts on the seismic performances of the RCED model under the Kocaeli earthquake. Introduction Prefabricated steel structures (PSSs) are a new type of structure that embodies the definition of a green building [1,2]. PSS models are manufactured in factories and assembled with bolt connections on site [3]. Compared with traditional steel buildings and structures, PSSs can reduce more energy, shorten construction period, reduce contamination, and protect the environment in its life cycle. A steel braced frame is a reliable structure that can resist earthquake. The traditional seismic design of structures is based on the anticollapse concept. The energy of an earthquake is dissipated by the plastic hinges formed in beam-to-column joints or the yielding of braces. When braces are buckled, the load-bearing and energy dissipation capacities of the braces are affected significantly. Hence, researchers worldwide have developed various types of buckling-restrained braces (BRBs) [4–6]. Traditional BRBs have successfully solved the buckling problem of braces, while steel frames with BRBs will experience large peak deformations and excessive interstory drifts in rare earthquake events. Some evidence has shown that the repairing cost will be higher than the reconstruction cost if the residual interstory drift is larger than 0.5% [7]. Additionally, the P-delta effect is significant in this type of structures and causes successive load cycles to pull the structure further in the same direction [8]. Based on the considerations above, self-centering systems have been developed by researchers. These types of systems can pull a structure back to its initial position after each load cycle, which can eliminate post-earthquake residual drifts. The following materials are frequently used for self-centering systems: posttensioned (PT) tendons, shape memory alloys (SMAs), and springs. |