مشخصات مقاله | |
ترجمه عنوان مقاله | یادگیری ماشین و هوش مصنوعی در خدمات پزشکی: ضرورت یا بالقوگی؟ |
عنوان انگلیسی مقاله | Machine learning and artificial intelligence in the service of medicine: Necessity or potentiality? |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 7 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR – MedLine |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
2.327 در سال 2019 |
شاخص H_index | 54 در سال 2020 |
شاخص SJR | 0.739 در سال 2019 |
شناسه ISSN | 2452-3186 |
شاخص Quartile (چارک) | Q2 در سال 2019 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی پزشکی، مهندسی کامپیوتر |
گرایش های مرتبط | سایبرنتیک پزشکی، هوش مصنوعی |
نوع ارائه مقاله |
ژورنال |
مجله | تحقیقات کنونی در کاربردی سازی علوم پزشکی – Current Research in Translational Medicine |
دانشگاه | Sorbonne University, Paris, France |
کلمات کلیدی | هوش مصنوعی، یادگیری ماشین، کاربردهای پزشکی |
کلمات کلیدی انگلیسی | Artificial intelligence, Machine learning, Medical applications |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.retram.2020.01.002 |
کد محصول | E14561 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
Introduction Basic definitions Patient Intake: obtaining initial patient data Radiology Hematology Neurology Oncology Cell biology and cell therapy Cardiology Ophthalmology Conclusion Declaration of Competing Interest Acknowledgments References |
بخشی از متن مقاله: |
Abstract Motivation: As a result of the worldwide health care system digitalization trend, the produced healthcare data is estimated to reach as much as 2314 Exabytes of new data generated in 2020. The ongoing development of intelligent systems aims to provide better reasoning and to more efficiently use the data collected. This use is not restricted retrospective interpretation, that is, to provide diagnostic conclusions. It can also be extended to prospective interpretation providing early prognosis. That said, physicians who could be assisted by these systems find themselves standing in the gap between clinical case and deep technical reviews. What they lack is a clear starting point from which to approach the world of machine learning in medicine. Methodology and Main Structure: This article aims at providing interested physicians with an easy-tofollow insight of Artificial Intelligence (AI) and Machine Learning (ML) use in the medical field, primarily over the last few years. To this end, we first discuss the general developmental paths concerning AI and ML concept usage in healthcare systems. We then list fields where these technologies are already being put to the test or even applied such as in Hematology, Neurology, Cardiology, Oncology, Radiology, Ophthalmology, Cell Biology and Cell Therapy. Introduction The introduction of information technology in the field of healthcare has provided improvements on numerous aspects [1], starting from digitization of patient data in electronic health records (EHR) [2] to providing clinical decision making [3] As a result of the worldwide health care system digitalization trend,the produced healthcare data in 2011 have been estimated to be 150 Exabytes 150 * 10^18, and it is estimated to have 2314 Exabytes of newly produced data in 2020 [4,5]. However, processing these data efficiently so that useful information and new knowledge can be extracted remains a real challenge. In fact, the ever-increasing amount of collected data withstands the ability of current data analysis systems. As a result, healthcare systems are increasingly burdened. This is called the “Data Rich/Information Poor (DRIP)” syndrome [6]. DRIP means that we are collecting more data than we can analyze. Fortunately, with the latest advancements in data analysis and decision-making systems, overcoming this challenge seems to finally be feasible. |