مشخصات مقاله | |
ترجمه عنوان مقاله | تجزیه و تحلیل و ارزیابی مدل های انتشار پیام تصادفی در شبکه های اجتماعی |
عنوان انگلیسی مقاله | Analysis and Evaluation of Random-Based Message Propagation Models on the Social Networks |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 14 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.205 در سال 2019 |
شاخص H_index | 119 در سال 2020 |
شاخص SJR | 0.592 در سال 2019 |
شناسه ISSN | 1389-1286 |
شاخص Quartile (چارک) | Q1 در سال 2019 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی فناوری اطلاعات |
گرایش های مرتبط | اینترنت و شبکه های گسترده |
نوع ارائه مقاله |
ژورنال |
مجله | شبکه های کامپیوتری – Computer Networks |
دانشگاه | National Ilan University, Shennong Rd., Yilan City 台灣 260, Taiwan |
کلمات کلیدی | خدمات شبکه اجتماعی (SNS)، مدل انتشار پیام (MPM)، خوشه اجتماعی |
کلمات کلیدی انگلیسی | SNS (Social Network Service), MPM (Message Propagation Model), Social Cluster |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.comnet.2019.107047 |
کد محصول | E14646 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction 2. The socially influential propagation models 3. Message propagation model (MPM) for social networks 4. Simulation environment and result analysis 5. Conclusion CRediT authorship contribution statement Declaration of Competing Interest Appendix. Supplementary materials Research Data References |
بخشی از متن مقاله: |
Abstract
Social network services (SNS), based on the complex relationships among people in real-life and virtual world, have become a major internet service for people to communicate with each other. Different social networks have different characteristics and varying levels of influence. To understand the message propagation process, the driving power behind it and its social influence, this paper presents a detailed analysis of message propagation models over the social networks by analyzing the relationships among nodes. This paper presents five proposed models which aim to analyze message propagations on social networks. We analyze the message propagation models and show how messages spread through the social networks. Furthermore, we propose a social network analysis on Hadoop platform to verify the social network characteristics. We also present a measurement study of messages collected from 900K users on Facebook, to verify our proposed models by means of big-data Hadoop platform. We believe that our research provides valuable insights for future social network service research. Introduction Recently, the rapid development and advancement of social network service (SNS) has made it possible to connect people who share the same interests and activities across political, economic, and geographic borders. Social network services have become a major internet service for people to communicate with each other. The current social network services generally operate based on the Six Degrees of Separation [1], which suggests that two random people are able to connect by a chain of six acquaintances on average, and aims to help users expand their personal networks through friends and connections. The mathematical analyses of the social network services revealed that most of the social network data and structures are too large and complex to be transformed into strict mathematical description. Therefore, computer simulations or big data analyses has become an accredited scientific verification, but how to collect useful information is a topic worth discussing. Nowadays, many researchers are interested in how to discover the rule or structure behind the complex social networks. In this paper, we present five proposed models to analyze message propagation on social networks. We analyze the message propagation models and show how messages spread through the social network. |