مشخصات مقاله | |
ترجمه عنوان مقاله | CRISPR-TSKO: ابزاری برای ویرایش ژنوم خاص بافت در گیاهان |
عنوان انگلیسی مقاله | CRISPR-TSKO: A Tool for Tissue-Specific Genome Editing in Plants |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 3 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
بررسی کوتاه (Mini Review) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR – MedLine |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
9.941 در سال 2019 |
شاخص H_index | 233 در سال 2020 |
شاخص SJR | 4.650 در سال 2019 |
شناسه ISSN | 1360-1385 |
شاخص Quartile (چارک) | Q1 در سال 2019 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | زیست شناسی |
گرایش های مرتبط | علوم سلولی و مولکولی، ژنتیک، علوم گیاهی |
نوع ارائه مقاله |
ژورنال |
مجله | روندها در علوم گیاهی – Trends In Plant Science |
دانشگاه | Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia |
کلمات کلیدی | ژنوم شناسی کارکردی، ویرایش ژنوم، CRISPR-Cas9 ،CRISPR-TSKO |
کلمات کلیدی انگلیسی | functional genomics، genome editing، CRISPR-TSKO، CRISPR-Cas9 |
https://doi.org/10.1016/j.tplants.2019.12.002 | |
کد محصول | E14740 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Heritable Genome Editing in Plants
Tissue-Specific Gene Knockdown Advantages and Applications of Tissue-Specific Gene Knockdown Limitations of Tissue-Specific Gene Knockdown References |
بخشی از متن مقاله: |
Heritable Genome Editing in Plants The adaptive immune system of prokaryotes, [clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR/Cas system)] CRISPRCas9 system, has been domesticated as a powerful genome-editing tool that has revolutionized the functional genomics of eukaryotes [1]. In the Streptococcus pyogenes CRISPR/Cas9 system, Cas9 endonuclease is directed by a single guide RNA to a complementary 20-nucleotide target DNA sequence where, upon the recognition of the protospacer-associated motif (NGG), the active Cas9 make DNA double-stranded breaks (DSBs) [2] and the following imprecise repair of DSBs leads to targeted mutations in DNA. The CRISPR-Cas9 system has been established successfully in the majority of model and crop species for functional knockouts and trait improvements [3,4]. Similarly, coupling of the CRISPR-Cas9 system with a homologydirected repair system paved the way for precise genome engineering in plants [5]. Moreover, CRISPR-Cas9 was applied to produce foreign DNA-free, non-genetically modified organism (GMO)-improved crops [6]. However, all of these genome-editing approaches have two main objectives, that is, to improve the rate of targeted mutagenesis and to recover mutant progenies [1]. For that, various methodologies like use of regulatory elements (enhancers, promoters, and terminators), specific cell-cycle/phases, viral replicons, and physical and chemical conditions were applied to enhance expression of CRISPR-Cas9 machinery and hence the recovery of edited plants [3,4,7]. Despite their success, it remains that more than 10% of Arabidopsis (Arabidopsis thaliana) genes, cannot be characterized with these methods. These genes are essential or have pleiotropic effects and their complete removal interferes with the cellular machinery, reproduction, or development [1]. In the absence of heritable homozygous knockouts for these essential and pleiotropic genes, their functions are assumed and their real roles remain unknown. |