مشخصات مقاله | |
ترجمه عنوان مقاله | عملکرد حرارتی مبدل های حرارتی متراکم با پیوند نفوذی |
عنوان انگلیسی مقاله | Thermal performance of diffusion-bonded compact heat exchangers |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 17 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
3.936 در سال 2019 |
شاخص H_index | 100 در سال 2020 |
شاخص SJR | 1.365 در سال 2019 |
شناسه ISSN | 1290-0729 |
شاخص Quartile (چارک) | Q1 در سال 2019 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی مکانیک، مهندسی انرژی |
گرایش های مرتبط | تبدیل انرژی، تاسیسات حرارتی و برودتی، سیستم های انرژی |
نوع ارائه مقاله |
ژورنال |
مجله | مجله بین المللی علوم حرارتی – International Journal of Thermal Sciences |
دانشگاه | Heat Pipe Laboratory, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianopolis, Brazil |
کلمات کلیدی | مبدل حرارتی متراکم، پیوند نفوذی، مبدل حرارتی جریان معکوس |
کلمات کلیدی انگلیسی | Compact heat exchanger، Diffusion bonding، Counter-flow heat exchanger |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.ijthermalsci.2020.106384 |
کد محصول | E14959 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract Nomenclature 1. Introduction 2. Compact heat exchanger theoretical model 3. Experimental setup 4. Results and discussion 5. Conclusions Declaration of competing interest Acknowledgments Appendix A Uncertainity analysis. Appendix B. Supplementary data Research Data References |
بخشی از متن مقاله: |
Abstract
This work presents an experimental and theoretical evaluation of the thermal performance of a square straight diffusion-bonded stainless steel compact heat exchanger. A one-dimensional steady-state thermal model was proposed to predict the thermal characteristics of the heat exchanger. To validate the model and to study the thermal behavior of the heat exchanger, an experimental test apparatus was developed. The heat exchanger was tested in several combinations of Reynolds ranging from 2600 to 7500, representing transition to turbulent regimes. The temperatures were varied from 70 C to 80 C for the water and from 25 C to 42 C for the air, at the inlet of the heat exchanger, respectively. A good agreement between the experimental data and the analytical model was obtained. Introduction In the petroleum and process industries, shell and tube or variations represent about 35% of the total of the heat exchangers used, being by far the most popular technology [1,2]. Although these types of heat exchangers are reliable and robust, their large volumes and footprint area make them not appropriate to be used in some applications [1,3]. On the other hand, compact heat exchangers are highly efficient, as their main characteristic is their large heat transfer surface area for a fixed volume. Although these devices have evolved considerably lately to new efficient solutions, they still deserve a great deal of research around the world. Compact heat exchangers have been developed for applications where requirements of small weight and space are mandatory, as encountered in aerospace, naval and automotive fields. In many heat exchangers especially the compact ones, hot and/or cold streams may flow through non-circular cross-section ducts, i.e., triangular or rectangular, among other geometries. The lengths of these ducts are usually small. The equipment may operate in several regimes, varying from laminar to turbulent. Advanced heat exchangers, like the printed circuit (PCHE), are compact devices characterized by a large heat transfer surface to volume ratio, which presents high effectiveness and low terminal temperature difference. Generally, the compact heat exchanger is fabricated from a large number of plates with channels, chemically etched or water–jet machined [4,5]. After a stacking process, a diffusion bonding technique is applied for fabricating the cores. |