مشخصات مقاله | |
ترجمه عنوان مقاله | یادگیری مشارکتی رو به تکامل عضویت مجموعه پیشرفته با حداقل مربعات بازگشتی هسته برای مدل سازی حرارتی ترانسفورماتورهای قدرت |
عنوان انگلیسی مقاله | An enhanced set-membership evolving participatory learning with kernel recursive least squares applied to thermal modeling of power transformers |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 8 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | Scopus – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.382 در سال 2019 |
شاخص H_index | 114 در سال 2020 |
شاخص SJR | 1.042 در سال 2019 |
شناسه ISSN | 0378-7796 |
شاخص Quartile (چارک) | Q1 در سال 2019 |
مدل مفهومی | دارد |
پرسشنامه | ندارد |
متغیر | دارد |
رفرنس | دارد |
رشته های مرتبط | برق |
گرایش های مرتبط | سیستم های قدرت، برق قدرت، مهندسی کنترل، الکترونیک قدرت، ماشین های الکتریکی، الکترونیک |
نوع ارائه مقاله |
ژورنال |
مجله | تحقیقات سیستم های توان الکتریکی – Electric Power Systems Research |
دانشگاه | Department of Industrial and Mechanical Engineering, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil |
کلمات کلیدی | عضویت پیشرفته، سیستم های فازی رو به تکامل، ترانسفورماتورهای قدرت، مدل سازی حرارتی |
کلمات کلیدی انگلیسی | Enhanced set-membership، Evolving fuzzy systems، Power transformers، Thermal modeling |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.epsr.2020.106334 |
کد محصول | E14948 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1- Introduction 2- Problem formulation 3- Proposed models 4- Experimental results 5- Conclusions References |
بخشی از متن مقاله: |
Abstract A factor that directly impacts the lifespan of a power transformer is the hot-spot temperature, and its monitoring is vital to prevent faults, reduce costs, keep the safety, and provide a reliable service to consumers. In this paper, we propose two forecasting models to predict the hot-spot temperature of power transformers. The first is the implementation of Set-Membership in the evolving Participatory Learning with Kernel Recursive Least Squares. And the second is a combination of the evolving Participatory Learning with Kernel Recursive Least Squares and the improved version of the Set-Membership concept, named Enhanced Set-Membership. Both Set-Membership and the Enhanced Set-Membership approaches are implemented to update the rate of change of the arousal index, which is a parameter that controls the creation of rules. A data set collected from an experimental transformer is adopted to evaluate the model’s performance. The obtained results are compared with the performance of the original evolving Participatory Learning with Kernel Recursive Least Squares and with the performance of other classical models suggested in the literature. The proposals have lower errors and a competitive number of final rules, suggesting that the models are efficient approaches to modeling complex data with high accuracy. Introduction The power transformer is a critical equipment in power distribution [1]. It is responsible for stepped-up the voltage before to be transmitted over long distances to reduce waste, and stepped-down the voltage to provide the energy to consumers safely [2,3]. Due to the composition of a power transformer, it is the most expensive apparatus in energy distribution [4]. In the case of a power transformer’s failure, when the recovering process is possible, it is slow and inefficient [5]. Thereof, monitoring is vital to prevent faults, reduce costs, keep the safety, and provide a reliable service to consumers [6,7]. The annual spent on power transformers’ monitoring hardware will increase more than $ 642 million in eight years until 2020, according to [8,9], indicating the importance of the power transformers in power distribution. Internal failures are about 10% of the total faults, and, among them, winding and bushing defects represent approximately 44% [10]. The bushing is a fragile component constituted of four parts: insulation, conductor, connection clamp, and accessories[11,12]. In the present work, we considered power transformers composed of Resin-bonded paper bushings (RBP) [13]. The principal factor in bushing failures is the hot-spot temperature, representing 32% of the total causes [11]. The hot-spot temperature is the highest temperature near to the top of the power transformers highvoltage (HV)/low-voltage (LV) windings [7,14] and represents the main limiting factor in the load capacity of the transformer [14], since increases in this temperature reduces the lifespan of the insulation and may determine the end life of the power transformer [15]. As the estimation of the hot-spot is a complex task, many models have been proposed in the literature with the purpose of estimating the hot-spot temperature of power transformers. Among them, the most commonly used in practice is the model based on the IEEE Standard C57.91-2011 [16] which is based on transient heating equations and specific thermal characteristics and parameters of power transformers. This deterministic model is imprecise due to assumed simplifications, and consequently, the power transformer must operate below the maximum capacity to prevent damages [7]. |