مشخصات مقاله | |
ترجمه عنوان مقاله | ضرایب رگرسیون به عنوان مقیاس سه گانه برای تشخیص بدافزار |
عنوان انگلیسی مقاله | Regression coefficients as triad scale for malware detection |
انتشار | مقاله سال 2021 |
تعداد صفحات مقاله انگلیسی | 14 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.071 در سال 2020 |
شاخص H_index | 55 در سال 2021 |
شاخص SJR | 0.579 در سال 2020 |
شناسه ISSN | 0045-7906 |
شاخص Quartile (چارک) | Q2 در سال 2020 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر |
گرایش های مرتبط | مهندسی نرم افزار، امنیت اطلاعات |
نوع ارائه مقاله |
ژورنال |
مجله | کامپیوتر و مهندسی برق – Computers and Electrical Engineering |
دانشگاه | Department of Information Systems, College of Computer and Information Systems, Umm Al Qura University, Makkah, Saudi Arabia |
کلمات کلیدی | شناسایی بدافزار، توالی فراخوانی، نمودارهای جریان کنترل، مقیاس سه گانه، تست تی، قابل اجرا، فراخوانی API |
کلمات کلیدی انگلیسی | Malware detection – Call sequences – Control flow graphs – Triad scale – T-test – Portable executable – API-call |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.compeleceng.2020.106886 |
کد محصول | E15277 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract Keywords 1. Introduction 2. Related research 3. Methods and materials 4. Experimental study 5. Conclusion Author statement Declaration of Competing Interest References |
بخشی از متن مقاله: |
Abstract
The malware detection methods are classified into two categories, namely, dynamic analysis (active analysis) and static analysis (passive analysis). These methods undergo unusual obstruction, and challenges that are process complexity, limitation over detection accuracy. The static method serves to discover malicious applications using various parameters like permission analysis, signature verification. It can be regularly obfuscated. Dynamic techniques entail investigating the performance of an application by administering it in a restricted environment. The complex version of a portable executable often emerges with an intervention by hardening the dynamic analysis centric malware detection methods. The various constraints of these dynamic and static models contribute to this manuscript represents a Multi-Level Malware detection using Triad Scale (MLMTS) built on regression coefficients. The proposed method MLMTS spans into three levels, such that the first and second level performs static analysis, and the third level performs the dynamic analysis. The second and third levels of the hierarchy invoke upon the ambiguous decision of their respective predecessor level. The proposed work is based on the Machine Learning (ML) model that determines the triad scale by applying linear regression for each level of malware detection. The call sequences of the portable executable, arguments passed to these call sequences and their fallouts (resultant values) in respective order of three levels of the MLMTS method. The experimental study manifests the significance of the proposal compared to the other recent malware detection methods. 1. Introduction The malicious software that is often termed as malware intends to infiltrate, infect, or intrude the cryptographic verification of the owner in the computer system. According to contemporary statistics [1], an average of 400 million malware models is recognized per annum. Currently, the malware family has boosted through the software modules engineered by incredible software skills [2]. The attacks can anonymize the source of the attack [2] and considerably succeeds in hacking the potential industrial structures known as the Stuxnet [3]. Anonymized sources are significant challenges to contemporary malware detection strategies. Extensive utilization of computer-networks is vulnerable to potential malware attacks. The dynamic network connectivity exposes the vulnerabilities of the corresponding network, which entertains the attackers to exploit these vulnerabilities to inject the malware into the respective system. The Intel organization has estimated the impact of malware in terms of loss of revenue as above 400 billion (USD 400 * 109 ) dollars worldwide per annum [1]. These statistics concreting the need for potential malware detect and defense mechanisms. |