مشخصات مقاله | |
ترجمه عنوان مقاله | پیش داروی پلیمری حساس به GSH: سنتز و بارگذاری با حساسیت به نور به عنوان نانو پزشکی ضد سرطان شیمی فوتوتینامیک در مقیاس نانو |
عنوان انگلیسی مقاله | GSH-sensitive polymeric prodrug: Synthesis and loading with photosensitizers as nanoscale chemo-photodynamic anti-cancer nanomedicine |
انتشار | مقاله سال 2021 |
تعداد صفحات مقاله انگلیسی | 34 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | Scopus – Master Journals List – JCR – DOAJ – PubMed Central |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
10.621 در سال 2020 |
شاخص H_index | 51 در سال 2021 |
شاخص SJR | 1.912 در سال 2020 |
شناسه ISSN | 2211-3835 |
شاخص Quartile (چارک) | Q1 در سال 2020 |
مدل مفهومی | دارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | پزشکی، داروسازی |
گرایش های مرتبط | رادیولوژی، نانو فناوری دارویی |
نوع ارائه مقاله |
ژورنال |
مجله | Acta Pharmaceutica Sinica B |
دانشگاه | Sichuan University, China |
کلمات کلیدی | پاسخ پذیری محرک ، پیش داروی پلیمری ، درمان فتودینامیکی ، درمان ترکیبی ، پزشکی نانو |
کلمات کلیدی انگلیسی | Stimuli responsiveness, Polymeric prodrug, Photodynamic therapy, Combinational therapy, Nanomedicine |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.apsb.2021.05.003 |
کد محصول | E15482 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract Graphical abstract Keywords 1. Introduction 2. Materials and methods 3. Results and discussion 4. Conclusions Author contributions Declaration of Competing Interest Acknowledgments Appendix A. Supplementary data References |
بخشی از متن مقاله: |
Abstract Precisely delivering combinational therapeutic agents has become a crucial challenge for anti-tumor treatment. In this study, a novel redox-responsive polymeric prodrug (MW: 93.5 kDa) was produced by reversible addition-fragmentation chain transfer (RAFT) polymerization. The amphiphilic block polymer-doxorubicin (DOX) prodrug was employed to deliver a hydrophobic photosensitizer (PS), chlorin e6 (Ce6), and the as-prepared nanoscale system [NPs(Ce6)] was investigated as a chemo-photodynamic anti-cancer agent. The glutathione (GSH)-cleavable disulfide bond was inserted into the backbone of the polymer for biodegradation inside tumor cells, and DOX conjugated onto the polymer with a disulfide bond was successfully released intracellularly. NPs(Ce6) released DOX and Ce6 with their original molecular structures and degraded into segments with low MWs of 41.2 kDa in the presence of GSH. NPs(Ce6) showed a chemo-photodynamic therapeutic effect to kill 4T1 murine breast cancer cells, which was confirmed from a collapsed cell morphology, a lifted level in the intracellular reactive oxygen species, a reduced viability and induced apoptosis. Moreover, ex vivo fluorescence images indicated that NPs(Ce6) retained in the tumor, and exhibited a remarkable in vivo anticancer efficacy. The combinational therapy showed a significantly increased tumor growth inhibition (TGI, 58.53%). Therefore, the redox-responsive, amphiphilic block polymeric prodrug could have a great potential as a chemo-photodynamic anti-cancer agent. 1. Introduction Chemotherapy is generally considered to be one of the most efficient methods for antitumor therapy, while photodynamic therapy (PDT), which uses light to excite photosensitizers (PSs) to generate reactive oxygen species (ROS) for oxidizing intracellular biomacromolecules to induce the death of tumor cells, offers minimal invasive treatment for assisting in chemotherapy1,2. However, a low antitumor efficiency and severe systemic toxic effects of chemotherapeutics and poor water solubility and insufficient tumor accumulation of PDT agents have hampered their application3. To overcome these challenges, nanomedicines derived from liposomes, micelles, nanoparticles, dendrimers and other polymers have been applied as drug delivery systems (DDSs) for anti-tumor agents4, 5, 6, 7, 8, 9, 10. These nanomedicines have improved their accumulation owing to the enhanced permeability and retention (EPR) effect, which can decrease side effects and enhance therapeutic efficacies11, 12, 13, 14. Among these reported systems, functional polymers in response to the tumor microenvironment have been designed as smart DDSs with great potential for cancer diagnosis and therapy. |