مقاله انگلیسی رایگان در مورد آیا پلتفرم های یادگیری ماشینی قابلیت تکرارپذیری قابل توجهی را فراهم می کنند؟ – الزویر 2021

 

مشخصات مقاله
ترجمه عنوان مقاله آیا پلتفرم های یادگیری ماشینی قابلیت تکرارپذیری قابل توجهی را فراهم می کنند؟
عنوان انگلیسی مقاله Do machine learning platforms provide out-of-the-box reproducibility?
انتشار مقاله سال 2021
تعداد صفحات مقاله انگلیسی 14 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
9.110 در سال 2020
شاخص H_index 119 در سال 2021
شاخص SJR 1.262 در سال 2020
شناسه ISSN 0167-739X
شاخص Quartile (چارک) Q1 در سال 2020
فرضیه ندارد
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط مهندسی کامپیوتر، فناوری اطلاعات
گرایش های مرتبط اینترنت و شبکه های گسترده، هوش مصنوعی
نوع ارائه مقاله
ژورنال
مجله  نسل آینده سیستم های کامپیوتری – Future Generation Computer Systems
دانشگاه Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
کلمات کلیدی تکرارپذیری، هوش مصنوعی قابل تکرار، فراگیری ماشین، نظر سنجی، آزمایش تکرارپذیری
کلمات کلیدی انگلیسی Reproducibility – Reproducible AI – Machine learning – Survey – Reproducibility experiment
شناسه دیجیتال – doi
https://doi.org/10.1016/j.future.2021.06.014
کد محصول E15858
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:

Highlights

Abstract

Keywords

1. Introduction

2. Reproducibility

3. Quantifying support for reproducibility

4. A survey of the reproducibility support of machine learning platforms

5. The reproducibility of digits classification

6. Conclusion

CRediT authorship contribution statement

Declaration of Competing Interest

Acknowledgment

References

Vitae

بخشی از متن مقاله:

Abstract

Science is experiencing an ongoing reproducibility crisis. In light of this crisis, our objective is to investigate whether machine learning platforms provide out-of-the-box reproducibility. Our method is twofold: First, we survey machine learning platforms for whether they provide features that simplify making experiments reproducible out-of-the-box. Second, we conduct the exact same experiment on four different machine learning platforms, and by this varying the processing unit and ancillary software only. The survey shows that no machine learning platform supports the feature set described by the proposed framework while the experiment reveals statstically significant difference in results when the exact same experiment is conducted on different machine learning platforms. The surveyed machine learning platforms do not on their own enable users to achieve the full reproducibility potential of their research. Also, the machine learning platforms with most users provide less functionality for achieving it. Furthermore, results differ when executing the same experiment on the different platforms. Wrong conclusions can be inferred at the at 95% confidence level. Hence, we conclude that machine learning platforms do not provide reproducibility out-of-the-box and that results generated from one machine learning platform alone cannot be fully trusted.

1. Introduction

A concern has grown in the scientific community related to the reproducibility of scientific results. The concern is not unjustified. According to a Nature survey, the scientific community is in agreement that there is an on-going reproducibility crisis [1]. According to the findings of the ICLR 2018 Reproducibility Challenge, experts in machine learning have similar concerns about reproducibility; more worryingly, their concern increased after trying to reproduce research results [2]. In psychology, the reproducibility project was only able to reproduce 36 out of 100 psychology research articles with statistically significant results [3]. Braun and Ong argue that computer science and machine learning should be in a better shape than other sciences, as many if not all experiments are completely conducted on computers [4]. However, even though this is true, computer science and machine learning research is not necessarily reproducible. Collberg and Proebsting report an experiment in which they tried to execute the code published as part of 601 papers. Their efforts succeeded in 32.1% of the experiments when not communicating with authors and 48.3% when communicating with the authors [5]. In their experiment, they only tried to run the code; they did not evaluate whether the results were reproducible.

Machine learning is still and to a very large degree an empirical science, so the issues with reproducibility is a concern. For example, to establish which algorithm is better for a task, an experiment is designed where the algorithms are trained and tested on the same datasets that represent the task. The one that compares best according to one or more performance metrics is deemed to be the best for a given task. Now, imagine that we have two algorithms that we want to compare. Algorithm A is our own and algorithm B is developed by third party. The results depend on how much documentation that is made available to us by the third party whom authored algorithm B. For example, if we only have access to written material, we have to implement the algorithm ourselves and test it on data that we collect ourselves. There is practically no way we can verify that we have implemented and configured the algorithm in the exact same way as the original authors. So, the more documentation (textual description, code and data) that is released by the original investigators, the easier for independent investigators to reproduce the reported results.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا