مشخصات مقاله | |
ترجمه عنوان مقاله | بازنگری در آمیختگی بین هوش مصنوعی و یادگیری انسان: یادگیرندگان برای دنیایی با هوش مصنوعی به چه قابلیت هایی نیاز دارند؟ |
عنوان انگلیسی مقاله | Rethinking the entwinement between artificial intelligence and human learning: What capabilities do learners need for a world with AI? |
انتشار | مقاله سال 2022 |
تعداد صفحات مقاله انگلیسی | 16 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | DOAJ |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
شناسه ISSN | 2666-920X |
فرضیه | ندارد |
مدل مفهومی | دارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر |
گرایش های مرتبط | هوش مصنوعی |
نوع ارائه مقاله |
ژورنال |
مجله | کامپیوتر و آموزش: هوش مصنوعی – Computers and Education: Artificial Intelligence |
دانشگاه | The University of Sydney, Australia b University of South Australia, Australi |
کلمات کلیدی | قابلیت های هوش مصنوعی، هوش مصنوعی در آموزش، دیالوگ پست دیجیتال، رویکرد اکولوژیکی |
کلمات کلیدی انگلیسی | Capabilities for AI – AI in education – Postdigital dialogue – Ecological approach |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.caeai.2022.100056 |
کد محصول | E16171 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction 2. Defining the territory 3. Methodology 4. Results 5. Joint discussion 6. Concluding remarks Declaration of competing interest Acknowledgements References |
بخشی از متن مقاله: |
Abstract The proliferation of AI in many aspects of human life—from personal leisure, to collaborative professional work, to global policy decisions—poses a sharp question about how to prepare people for an interconnected, fast-changing world which is increasingly becoming saturated with technological devices and agentic machines. What kinds of capabilities do people need in a world infused with AI? How can we conceptualise these capabilities? How can we help learners develop them? How can we empirically study and assess their development? With this paper, we open the discussion by adopting a dialogical knowledge-making approach. Our team of 11 co-authors participated in an orchestrated written discussion. Engaging in a semi-independent and semi-joint written polylogue, we assembled a pool of ideas of what these capabilities are and how learners could be helped to develop them. Simultaneously, we discussed conceptual and methodological ideas that would enable us to test and refine our hypothetical views. In synthesising these ideas, we propose that there is a need to move beyond AI-centred views of capabilities and consider the ecology of technology, cognition, social interaction, and values. Introduction The appearance of computers in the workplaces at the turn of the 21st century has added ‘algorithmic thinking’ and ‘computing literacy’ to the repertoire of thinking skills and literacies that have been seen as essential for successful functioning and employment in society (Knuth, 1985; Papert, 1972; Sloan & Halaris, 1985). The proliferation of personal computers and other digital devices in people’s everyday lives raised the need for different kinds of skills and literacies, such as ‘ICT skills’, ‘media literacy’ and ‘digital literacy’ (Markauskaite, 2005, 2006). The recent emergence of big data, machine learning, robotics and Al gave the birth to ‘data literacy’, ‘computational thinking’, ‘AI literacy’ and other new skills (Bull, Garofalo, & Hguyen, 2020; Long & Magerko, 2020; Mandinach & Gummer, 2013). Simultaneously, the increasing interconnectivity, complexity, and fast changes in knowledge and skills needed for everyday life and jobs have shifted the attention from technology-centred skills and literacies to a broader set of generic competencies, such as creativity, analytical thinking, active self-driven learning, and global citizenship (World Economic Forum, 2018, 2020). Results Our individual perspectives on the capabilities for an AI-infused world ranged from more individual, cognitively oriented views to more relational, socially oriented perspectives. We use this dimension as a guide to sequence our contributions, starting from the perspectives that emphasise individuals and moving towards broader, relational conceptualisations. 4.1. Using AI to become an agentic learner: A self-regulated learning perspective (Dragan Gašević, DG) Developments in AI accelerate technological change in workplaces and demands for continuous learning, upskilling, and reskilling. To maintain job relevance and support future career transitions in a world with AI, individuals will require highly developed self-regulated learning (SRL) skills (Winne et al., 2017). These are not just important for matters related to labour markets but also for other aspects of life such as personal finances, health, culture, and climate. SRL skills play a critical role in all facets of human learning and development. For instance, SRL underpins how learners navigate and operate on online information, form queries to search information on the Web or social media, and scan and assemble information. At each step, learners decide what information is relevant and judge how it supports achievement of their learning goals (Dunlosky & Thiede, 2013). The need for SRL skills is even more acutely emphasised in the age of AI due to two prominent reasons: (i) the need to adapt (re- or up-skill) frequently due to speed of job and life changes; and (ii) the need to maintain agency in decision making while working AI systems. |