مشخصات مقاله | |
ترجمه عنوان مقاله | مدل های پیش بینی یادگیری ماشین و یادگیری عمیق برای دیابت نوع 2: یک مرور اصولی |
عنوان انگلیسی مقاله | Machine learning and deep learning predictive models for type 2 diabetes: a systematic review |
انتشار | مقاله سال 2021 |
تعداد صفحات مقاله انگلیسی | 22 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه اسپرینگر |
نوع نگارش مقاله |
مقاله مروری (Review Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | JCR – Master Journal List – Scopus – DOAJ – PubMed Central |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
5.330 در سال 2020 |
شاخص H_index | 55 در سال 2021 |
شاخص SJR | 1.118 در سال 2020 |
شناسه ISSN | 1758-5996 |
شاخص Quartile (چارک) | Q1 در سال 2020 |
فرضیه | ندارد |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر – مهندسی پزشکی |
گرایش های مرتبط | هوش مصنوعی – مهندسی پزشکی بالینی |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | Diabetology & Metabolic Syndrome – دیابت شناسی و سندرم متابولیک |
دانشگاه | School of Engineering and Sciences, Nuevo Leon, Mexico |
کلمات کلیدی | دیابت، یادگیری ماشین، یادگیری عمیق، مرور، پرونده های سلامت الکترونیکی |
کلمات کلیدی انگلیسی | Diabetes, Machine learning, Deep learning, Review, Electronic health records |
شناسه دیجیتال – doi |
https://doi.org/10.1186/s13098-021-00767-9 |
کد محصول | E16227 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract Introduction Background Systematic literature review methodologies Related works Methods Search strategy Eligibility criteria Data extraction Risk of bias analyses Results Quality assessment Risk of bias analyses Discussion Conclusions References |
بخشی از متن مقاله: |
Abstract Diabetes Mellitus is a severe, chronic disease that occurs when blood glucose levels rise above certain limits. Over the last years, machine and deep learning techniques have been used to predict diabetes and its complications. However, researchers and developers still face two main challenges when building type 2 diabetes predictive models. First, there is considerable heterogeneity in previous studies regarding techniques used, making it challenging to identify the optimal one. Second, there is a lack of transparency about the features used in the models, which reduces their interpretability. This systematic review aimed at providing answers to the above challenges. The review followed the PRISMA methodology primarily, enriched with the one proposed by Keele and Durham Universities. Ninety studies were included, and the type of model, complementary techniques, dataset, and performance parameters reported were extracted. Eighteen different types of models were compared, with tree-based algorithms showing top performances. Deep Neural Networks proved suboptimal, despite their ability to deal with big and dirty data. Balancing data and feature selection techniques proved helpful to increase the model’s efficiency. Models trained on tidy datasets achieved almost perfect models. Introduction Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both [1]. In particular, type 2 diabetes is associated with insulin resistance (insulin action defect), i.e., where cells respond poorly to insulin, affecting their glucose intake [2]. The diagnostic criteria established by the American Diabetes Association are: (1) a level of glycated hemoglobin (HbA1c) greater or equal to 6.5%; (2) basal fasting blood glucose level greater than 126 mg/dL, and; (3) blood glucose level greater or equal to 200 mg/dL 2 h after an oral glucose tolerance test with 75 g of glucose [1]. Diabetes mellitus is a global public health issue. In 2019, the International Diabetes Federation estimated the number of people living with diabetes worldwide at 463 million and the expected growth at 51% by the year 2045. Moreover, it is estimated that there is one undiagnosed person for each diagnosed person with a diabetes diagnosis [2]. The early diagnosis and treatment of type 2 diabetes are among the most relevant actions to prevent further development and complications like diabetic retinopathy [3]. According to the ADDITION-Europe Simulation Model Study, an early diagnosis reduces the absolute and relative risk of suffering cardiovascular events and mortality [4]. A sensitivity analysis on USA data proved a 25% relative reduction in diabetes-related complication rates for a 2-year earlier diagnosis. Results Search results and reduction Further selection was conducted by applying the exclusion criteria to the 336 records above. Thirty-seven records were excluded since the study reported used non-omittable genetic attributes as model inputs, something out of this review’s scope. Thirty-eight records were excluded as they were review papers. All in all, 261 articles that fulfill the criteria were included in the quality assessment. |