مشخصات مقاله | |
ترجمه عنوان مقاله | ارزیابی خسارت طوفان با استفاده از شبکه های عصبی کانولوشنال جفت شده: مطالعه موردی طوفان مایکل |
عنوان انگلیسی مقاله | Hurricane damage assessment using coupled convolutional neural networks: a case study of hurricane Michael |
انتشار | مقاله سال 2022 |
تعداد صفحات مقاله انگلیسی | 18 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه تیلور و فرانسیس – Taylor & Francis |
نوع نگارش مقاله | مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | JCR – Master Journal List – Scopus – DOAJ |
نوع مقاله |
ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.140 در سال 2020 |
شاخص H_index | 44 در سال 2022 |
شاخص SJR | 0.764 در سال 2020 |
شناسه ISSN | 1947-5713 |
شاخص Quartile (چارک) | Q1 در سال 2020 |
فرضیه | ندارد |
مدل مفهومی | دارد |
پرسشنامه | ندارد |
متغیر | دارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر – جغرافیا |
گرایش های مرتبط | مهندسی نرم افزار – هوش مصنوعی – مخاطرات محیطی – مخاطرات آب و هوایی |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | ژئوماتیک، مخاطرات طبیعی و ریسک – Geomatics, Natural Hazards and Risk |
دانشگاه | Department of Geography, Ohio State University, USA |
کلمات کلیدی | ارزیابی آسیب – شبکه عصبی کانولوشن – VHR – طوفان – یادگیری عمیق |
کلمات کلیدی انگلیسی | Damage assessment – Convolutional neural network – VHR – Hurricane – Deep learning |
شناسه دیجیتال – doi | https://doi.org/10.1080/19475705.2022.2030414 |
کد محصول | e16659 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction 2. Methodology 3. Results 4. Discussion 5. Conclusions Data availability statement Disclosure statement Funding References |
بخشی از متن مقاله: |
Abstract Remote sensing provides crucial support for building damage assessment in the wake of hurricanes. This article proposes a coupled deep learning-based model for damage assessment that leverages a large very high-resolution satellite images dataset and a flexibility of building footprint source. Convolutional Neural Networks were used to generate building footprints from pre-hurricane satellite imagery and conduct a classification of incurred damage. We emphasize the advantages of multiclass classification in comparison with traditional binary classification of damage and propose resolving dataset imbalances due to unequal damage impact distribution with a focal loss function. We also investigate differences between relying on learned features using a deep learning approach for damage classification versus a commonly used shallow machine learning classifier, Support Vector Machines, that requires manual feature engineering. The proposed model leads to an 86.3% overall accuracy of damage classification for a case event of Hurricane Michael and an 11% overall accuracy improvement from the Support Vector Machines classifier, suggesting better applicability of such an open-source deep learning-based workflow in disaster management and recovery. Furthermore, the findings can be integrated into emergency response frameworks for automated damage assessment and prioritization of relief efforts. Introduction Hurricanes have been the most expensive type of disaster in the USA (CRED 2019) and historically deathliest, continuing to drive the importance of improving techniques to assess post-hurricane urban damage. The process of such damage assessment involves detection, classification, and evaluation of disaster damage to an economy and society on local, county, state, or tribal levels (FEMA 2016). Remote sensing analysis has proved to be indispensable in aiding these assessment efforts (Adams et al. 2009; Waharte and Trigoni 2010; Stow et al. 2015). In particular, the Federal Emergency Management Agency (FEMA) relies on remote sensing analysis to rapidly assess a large-scale impact and monitor areas that cannot be effectively accessed on the ground. The timeliness, accuracy, and semantic information of such remote sensing analysis results are of key interest (Stow et al. 2015). Conclusions In this study, we proposed a damage assessment workflow from VHR big data imagery, xBD, consisting of two CNNs that delineate building footprints and classify hurricane-incurred damage into four categories: un-damaged, lightly damaged, severely damaged, and destroyed buildings. The coupled model allows users to utilize an existing building footprint, unlike unified models. Another key contribution of this study was addressing a class imbalance problem in the xBD dataset with a focal loss function. We examined a case study of Hurricane Michael in 2018 around the Panama City metropolitan area, where our proposed models achieved an overall accuracy of 84.6% for building footprint segmentation and 86.3% for damage classification tasks. The model successfully identified undamaged buildings with an F1-score of 95.4% and predicts three damage classes (minor, major damage, and destroyed) with 59.3%, 68.7%, and 74.2% F1-score, respectively. An output of this model presents a probability vector of each building belonging to damage classes, thus, creating an opportunity for emergency management and first responders to set a higher or lower threshold for alerting about a hurricane damage presence. |