مشخصات مقاله | |
ترجمه عنوان مقاله | بازیافت همزمان مواد کربنی طبیعی و مصنوعی برای اقتصاد چرخشی پایدار |
عنوان انگلیسی مقاله | Co-recycling of natural and synthetic carbon materials for a sustainable circular economy |
انتشار | مقاله سال 2022 |
تعداد صفحات مقاله انگلیسی | 11 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | Scopus – Master Journal List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
10.956 در سال 2020 |
شاخص H_index | 232 در سال 2022 |
شاخص SJR | 1.921 در سال 2020 |
شناسه ISSN | 0959-6526 |
شاخص Quartile (چارک) | Q1 در سال 2020 |
فرضیه | ندارد |
مدل مفهومی | دارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | اقتصاد – مهندسی محیط زیست – شیمی |
گرایش های مرتبط | اقتصاد انرژی – بازیافت و مدیریت پسماند – شیمی آلی |
نوع ارائه مقاله |
ژورنال |
مجله | مجله تولید پاک تر – Journal of Cleaner Production |
دانشگاه | Chalmers University of Technology, Sweden |
کلمات کلیدی | مواد کربنی – مدیریت منابع – اقتصاد دایره ای – بازیافت – فرآیند ترموشیمیایی – کاهش انتشار کربن |
کلمات کلیدی انگلیسی | Carbon materials – Resource management – Circular economy – Recycling – Thermochemical process – Carbon emissions reduction |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.jclepro.2022.132674 |
کد محصول | e16695 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1 Introduction 2 Data and methods 3 Results 4 Discussion 5 Conclusion Funding Data and materials availability CRediT authorship contribution statement Declaration of competing interest Acknowledgements References |
بخشی از متن مقاله: |
Abstract Circular economy approaches are commonly depicted by two cycles, where the biological cycle is associated with regeneration in the biosphere and the technical cycle with reuse, refurbishment, and recycling to maintain value and maximize material recovery. This work, instead, presents an alternative vision to the management of carbon-based materials that integrates the two cycles and enables the phasing-out of fossil carbon from the material system. The aim is to investigate the benefits and global potential of a co-recycling system, as an alternative to conventional recycling systems that separate biomass-based materials (e.g., wood, paper) from fossil-based materials (e.g., plastics). Thermochemical recycling technologies enable the conversion of carbon-based waste materials into high-quality synthetic products, promoting circularity and avoiding carbon losses such as carbon emissions and waste accumulation in landfills and nature. Here, the construction and analysis of co-recycling scenarios show how the deployment of thermochemical recycling technologies can decouple the material system from fossil resource extraction. Furthermore, energy use is reduced if pyrolysis and/or gasification are included in the portfolio of recycling technologies. In a decarbonized energy system, deployment of co-recycling can lead to near-zero carbon emissions, while in more carbon-intensive energy systems the choice of thermochemical recycling route is key to limiting carbon emissions. Introduction Carbon-based fuels (mainly fossil fuels but also biomass) account for about 90% of the current global primary energy supply. Carbon is also a building block in a wide range of materials (carbon-based materials; C-materials) used in society. While fossil fuel use is the main cause of anthropogenic greenhouse gas (GHG) emissions, and a transition away from the use of such fuels is essential to limit the global temperature increase to 1.5 °C (IPCC et al., 2018), the production and use of materials such as plastics, cement and steel entail significant GHG emissions (IEA, 2018; Jambeck et al., 2015). The use of biomass-based products can effectively reduce the use of fossil fuels and GHG-intensive materials. There is also scope for substituting existing biobased products with more benign products. For example, cellulose-based textiles can replace cotton which is associated with soil and water depletion, as well as harmful impacts on human health and biodiversity due to excessive use of pesticides and fertilizers (IPCC et al., 2019c; Niinimäki et al., 2020). However, the biomass supply potential is limited by resource constraints (Gerten, 2018) and implications of expanded biomass use for mitigation and other objectives depend on many factors, including soil and climate conditions, biomass type, land management system, scale and pace of deployment, and influence on land use (Calvin et al., 2021). For instance, cropland expansion for energy crop production may cause deforestation, with consequent GHG emissions and negative impacts on biodiversity (IPCC et al., 2019b). Conclusion A co-recycling scenario utilizing advanced thermochemical recycling is proposed and analyzed. The results show that such a scenario can combine natural and synthetic C-materials in the same recycling scheme and that enables to decoupling of the Carbon Material System from the extraction of fossil resources, as well as minimizing waste generation. Advanced thermochemical recycling enables the recovery of any carbon flow (CO2, natural or synthetic, losses, etc.) and the production of high-quality products. A focus on carbon recycling, instead of material recycling, can improve C-materials (wood, paper, plastics, and textiles) resource management, by increasing the resource utilization from 0.7 to 1.1 tC-material/tCRtM, i.e., producing more C-materials than resources used, as well as reducing the CMS losses by half. |