مقاله انگلیسی رایگان در مورد رویکرد تصمیم گیری چند هدفه یکپارچه برای بررسی رقابت پذیری شرکتهای دارویی – اسپرینگر 2022

 

مشخصات مقاله
ترجمه عنوان مقاله یک رویکرد تصمیم گیری چند هدفه یکپارچه برای بررسی رقابت پذیری شرکت های چندملیتی دارویی
عنوان انگلیسی مقاله An integrated multiple objective decision making approach for exploring the competitiveness of pharmaceutical multinational enterprises
نشریه اسپرینگر
سال انتشار 2022
تعداد صفحات مقاله انگلیسی  26 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
نوع نگارش مقاله
مقاله پژوهشی (Research article)
مقاله بیس این مقاله بیس میباشد
نمایه (index) JCR – Master Journal List – Scopus
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
4.549 در سال 2020
شاخص H_index 11 در سال 2022
شاخص SJR 1.165 در سال 2020
شناسه ISSN 1572-9338
شاخص Quartile (چارک) Q1 در سال 2020
فرضیه ندارد
مدل مفهومی دارد
پرسشنامه ندارد
متغیر دارد
رفرنس دارد
رشته های مرتبط مدیریت – داروسازی – مهندسی صنایع
گرایش های مرتبط مدیریت اجرایی – داروسازی صنعتی – داده کاوی
نوع ارائه مقاله
ژورنال
مجله / کنفرانس سالنامه تحقیق در عملیات – Annals of Operations Research
دانشگاه Faculty of Business Administration, Ton Duc Thang University, Vietnam
کلمات کلیدی نظریه مجموعه خشن – تاپسیس – تحلیل پوششی داده ها (DEA) – عملکرد ESG – صنعت داروسازی
کلمات کلیدی انگلیسی Rough set theory – TOPSIS – Data envelopment analysis (DEA) – ESG performance – Pharmaceutical industry
شناسه دیجیتال – doi
https://doi.org/10.1007/s10479-022-04743-y
لینک سایت مرجع
https://link.springer.com/article/10.1007/s10479-022-04743-y
کد محصول e17133
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
1 Introduction
2 Literature review
3 Research design
4 Empirical analysis
5 Conclusion
Appendix A: R&D efficiency scores of the 8 different combinations
Appendix B: Business performance scores of the 8 different combinations
References

 

بخشی از متن مقاله:

Abstract

     This study integrated multiple objective decision-making approaches including data envelopment analysis (DEA), rough set theory and TOPSIS method for exploring the competitiveness of pharmaceutical multinational enterprises. Firstly, this study applied an advanced two-stage network DEA to measure the R&D efficiency and business performance of pharmaceutical multinational enterprises (PMNEs) listed in the Forbes Global 2000 and ranked these PMNEs by using rough set theory, DEA and TOPSIS method. In addition, differences in environmental, social, and governance (ESG) performance across three continents were investigated. Findings show that North America is significantly the best (worst) region in terms of business performance (R&D efficiency) while Europe is significantly the best (worst) region in terms of R&D efficiency (business performance). Alfresa Holdings Corporation, a PMNE from Japan, is the only PMNE that is efficient from both an R&D and business performance perspective. European PMNEs have significantly better environmental and social performance than other regions, however, they have the worst governance performance. Overall, this study provides insights to managers and investors into the application of various methods for accurately measuring performance and ranking multinational enterprises.

Introduction

     The pharmaceutical industry is one of the most important and competitive industries in the world, it not only has a critical role in the health maintenance of individuals but also in economic growth (Sharma & Modgil, 2019). Pharmaceutical firms have spent a substantial proportion of their time and investment in research and development (R&D) (Rao, 2020). In 2018, R&D expenditure in the pharmaceutical industry was 179 billion U.S. dollars globally (Mikulic, 2020). A correct grasp of the R&D efficiency of the industry is required to improve resource allocation and thereby prevent either excess or shortage of resource inputs (Liu & Lyu, 2020). According to Lu et al. (2019), evaluating multiple indicators simultaneously is useful for appropriate decision-making. An overall efficiency can be decomposed into two stages of efficiencies (Kao & Hwang, 2008), suggesting that we should also evaluate the sub-processes of a firm (Kao & Hwang, 2011). That is, managers should evaluate their firm performance not only from a multidimensional perspective but also from those of its internal processes. As mentioned in the research of Sharma and Modgil (2019), business performance additionally depends on cost reduction of manufacturing operations and improving the firm’s innovative ability. Recently, Hsieh et al. (2020) have applied two-stage data envelopment analysis (DEA) to investigate organizations’ innovation and business performance by investigating the network structures of decision-making units (DMUs).

Conclusion

     This study measures the firm performance of 41 PMNEs from a two-stage perspective, namely R&D efficiency and business performance, by integrating a two-stage network DEA and SOCP technique. Moreover, this study integrates the DEA approach and rough set theory to rank PMNEs. The findings of this research can serve as a reference for managers of PMNEs in their decision-making process. Besides, we examine differences in the ESG scores of the PMNEs among different geographic regions (America, Asia, and Europe). This acts as a guide for investors, managers, and other stakeholders when attempting to move their ESG initiatives further.

     R&D performances in the operation of the observed PMNEs are not attracting enough attention. Alfresa Holdings Corporation is the only efficient PMNE for both R&D efficiency and business performance. North America is significantly the best (worst) region in terms of business performance (R&D efficiency) while Europe is significantly the best (worst) region in terms of R&D efficiency (business performance). From the perspective of ESG performance, European PMNEs significantly have better environmental and social performance than other regions whereas they are the worst concerning governance performance.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا