مشخصات مقاله | |
ترجمه عنوان مقاله | بارگذاری مبتنی بر آستانه توزیع کارآمد برای محاسبات ابری موبایل در مقیاس بزرگ |
عنوان انگلیسی مقاله | Efficient Distributed Threshold-Based Offloading for Large-Scale Mobile Cloud Computing |
نشریه | آی تریپل ای – IEEE |
سال انتشار | 2023 |
تعداد صفحات مقاله انگلیسی | 14 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.659 در سال 2022 |
شاخص H_index | 179 در سال 2023 |
شاخص SJR | 2.025 در سال 2022 |
شناسه ISSN | 1063-6692 |
شاخص Quartile (چارک) | Q1 در سال 2022 |
فرضیه | ندارد |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر – مهندسی فناوری اطلاعات |
گرایش های مرتبط | رایانش ابری – اینترنت و شبکه های گسترده – مهندسی نرم افزار – مهندسی الگوریتم ها و محاسبات |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | نتایج بدست آمده در حوزه IEEE/ACM در شبکه – IEEE/ACM Transactions on Networking |
دانشگاه | Department of Computer Science, Babasaheb Bhimrao Ambedkar University, Lucknow (UP), India |
کلمات کلیدی | رایانش ابری سیار – بارگذاری توزیع شده – تعادل نش – قیمت هرج و مرج – همگرایی |
کلمات کلیدی انگلیسی | Mobile cloud computing – distributed offloading – Nash equilibrium – price of anarchy – convergence |
شناسه دیجیتال – doi |
https://doi.org/10.1109/TNET.2022.3193073 |
لینک سایت مرجع |
https://ieeexplore.ieee.org/document/9843956 |
کد محصول | e17403 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract I INTRODUCTION II SYSTEM MODEL II SYSTEM MODEL IV SIMULATIONS V CONCLUSION APPENDIX A APPENDIX B REFERENCES |
بخشی از متن مقاله: |
Abstract Mobile cloud computing enables compute-limited mobile devices to perform real-time intensive computations such as speech recognition or object detection by leveraging powerful cloud servers. An important problem in large-scale mobile cloud computing is computational offloading, where each mobile device decides when and how much computation should be uploaded to cloud servers by considering the local processing delay and the cost of using cloud servers. In this paper, we develop a distributed threshold-based offloading algorithm where it uploads an incoming computing task to cloud servers if the number of tasks queued at the device reaches the threshold and processes it locally otherwise. The threshold is updated iteratively based on the computational load and the cost of using cloud servers. We formulate the problem as a symmetric game, and characterize the sufficient and necessary conditions for the existence and uniqueness of the Nash Equilibrium (NE) assuming exponential service times. Then, we show the convergence of our proposed distributed algorithm to the NE when the NE exists. Further, we characterize the performance gap between cost under our proposed distributed algorithm and the minimum cost in terms of Price of Anarchy (PoA) when the cost of using cloud servers is high. Finally, we perform extensive simulations to validate our theoretical findings, demonstrate the efficiency of our proposed distributed algorithm under various scenarios such as hyperexponential service times, imperfect server utilization estimation, and asynchronous threshold updates, and reveal the superior performance of threshold-based policies over their probabilistic counterpart.
Introduction
REAL-TIME mobile cloud applications (see [1], [2]) have grown rapidly over the last few years and have become ubiquitous. For example, in an international trade show such as Consumer Electronics Show, people in the same convention center may need real-time translation services on their mobile devices at the same time, making it challenging to provide low latency language translation with a low service cost. On the one hand, computing limited devices may not have the required computational capability to process the data locally; and on the other hand, offloading the computing tasks to a cloud-computing center incurs both communication and computing costs. Mobile cloud computing, which utilizes both mobile and cloud computing powers, is a vital solution to address this challenge. A central question in mobile cloud computing is: how much to offload and when? This paper addresses this important question and proposes a distributed offloading algorithm where each device aims at minimizing a cost function, including both the local processing delay and offloading cost at the cloud computing center.
Conclusion
In this paper, we proposed a distributed threshold-based offloading algorithm so that each user gradually updates its own threshold with the goal of minimizing its own cost function consisting of average processing delay and the cost of using the cloud services depending on the server utilization in large-scale mobile cloud computing. We then characterized the sufficient and necessary conditions for the existence and uniqueness of the Nash Equilibrium offloading decision under the exponential service time distribution. Furthermore, we showed the convergence of our proposed distributed algorithm to Nash Equilibrium when it exists. Then, we characterized the performance of PoA when the cost of using cloud servers is high. Finally, we performed extensive simulations to confirm our theoretical findings, exhibited the efficiency of our proposed algorithm under various practice scenarios such as hyperexponential service time distributions, imperfect server utilization estimation, and asynchronous threshold updates, and demonstrated the superior performance of threshold-based policies over their probabilistic counterpart.
|