مقاله انگلیسی رایگان در مورد آنالیز داده های بزرگ: کاربرد در صنعت بانکداری – امرالد 2023

 

مشخصات مقاله
ترجمه عنوان مقاله تجزیه و تحلیل داده های بزرگ: کاربرد در صنعت بانکداری
عنوان انگلیسی مقاله Big data analytics: Application in the banking industry
نشریه امرالد – emerald insight
سال انتشار 2023
تعداد صفحات مقاله انگلیسی  3 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) scopus
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
0.144 در سال 2022
شاخص H_index 17 در سال 2023
شاخص SJR 0.117 در سال 2022
شناسه ISSN 0258-0543
شاخص Quartile (چارک) Q4 در سال 2022
فرضیه
ندارد
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط مدیریت
گرایش های مرتبط بانکداری – سیستم های اطلاعاتی پیشرفته
نوع ارائه مقاله
ژورنال
مجله / کنفرانس جهت راهبردی – STRATEGIC DIRECTION
کلمات کلیدی کلان داده – صنعت بانکداری – تجزیه و تحلیل داده های بزرگ
کلمات کلیدی انگلیسی Big data – Banking industry – Big data analytics
شناسه دیجیتال – doi
https://doi.org/10.1108/SD-01-2023-0006
لینک سایت مرجع
https://www.emerald.com/insight/content/doi/10.1108/SD-01-2023-0006/full/html
کد محصول e17486
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
Challenges with big data analytics
Customer clustering analysis
Product affinity prediction model
Impact of big data analytics in bank A
Comment
Reference

بخشی از متن مقاله:

Abstract

Purpose
This paper aims to review the latest management developments across the globe and pinpoint practical implications from cutting-edge research and case studies.

Design/methodology/approach
This briefing is prepared by an independent writer who adds their own impartial comments and places the articles in context.

Findings
The paper examines the multi-wave implementation of big data analytics in a Taiwanese bank.

Originality/value
The briefing saves busy executives, strategists, and researchers hours of reading time by selecting only the very best, most pertinent information and presenting it in a condensed and easy-to-digest format.

Challenges with big data analytics

Despite its potential, the adoption of big data analytics is hindered by numerous challenges. Financial consideration and human resources are the two main factors obstructing its implementation. Studies suggest many banks are yet to realize the full benefits and returns of leveraging big data. Most organizations also lack adequate managerial and technical skills to gain value from big data usage. Indeed, many banks unfamiliar with this new practice lack the capabilities to embed big data analytics into their operations and processes. A difficulty firms face is reducing a large and diverse dataset derived from several sources into easy-to-interpret results that can support decisionmaking. It becomes critical for firms to employ experienced data scientists who can uncover insights that can help improve the bank’s operation and performance. Banks also face many non-technical challenges in big data applications. Organizations need the buy-in from organizational members from all ranks-from senior management to lower levels across various functions. The adoption of new technologies necessitates changes in operating practices which may result in organizational resistance. Security, privacy and government regulations can also impact big data applications.

Impact of big data analytics in bank A

Using insights from customer clustering and product affinity models, Bank A was able to adapt its offerings across channels. For example, the organization used cluster affinity scores to target specific marketing campaigns for those customers. Bank A implemented these changes in three waves across ten months. The results showed that the different divisions (e.g. wealth management and personal finance) improved their response rates using the two data analytics methods.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا