مشخصات مقاله | |
ترجمه عنوان مقاله | اینفلوئنسر مجازی ایجاد شده با هوش مصنوعی: بررسی تاثیرات نمایش احساسی بر مشارکت کابر |
عنوان انگلیسی مقاله | Artificial intelligence-generated virtual influencer: Examining the effects of emotional display on user engagement |
نشریه | الزویر |
انتشار | مقاله سال 2023 |
تعداد صفحات مقاله انگلیسی | 10 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
12.405 در سال 2022 |
شاخص H_index | 120 در سال 2023 |
شاخص SJR | 2.543 در سال 2022 |
شناسه ISSN | 0969-6989 |
شاخص Quartile (چارک) | Q1 در سال 2022 |
فرضیه | ندارد |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مدیریت |
گرایش های مرتبط | بازاریابی |
نوع ارائه مقاله |
ژورنال |
مجله | Journal of Retailing and Consumer Services – مجله خرده فروشی و خدمات مصرف کننده |
دانشگاه | Modul University Vienna, Austria |
کلمات کلیدی | تصویر سازی کامپیوتری، واحد کنش صورت، رسانه های اجتماعی |
کلمات کلیدی انگلیسی | Computer-generated imagery, Facial action unit, Social media |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.jretconser.2023.103560 |
لینک سایت مرجع | https://www.sciencedirect.com/science/article/pii/S0969698923003119 |
کد محصول | e17597 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1 Introduction 2 Literature review 3 Methodology 4 Results 5 Discussion 6 Conclusion Declaration of Competing interest Acknowledgements Data availability References |
بخشی از متن مقاله: |
Abstract Focusing on the application of artificial intelligence, this study investigates the impact of emotional display on user engagement with computer-generated imagery influencers through the lens of the computers are social actors (CASA) framework. It breaks down emotions into individual muscle movements (i.e., facial action units). By using facial recognition based on 1,028 pictures shared by Lil Miquela, the findings disclose the significance of happiness, sadness, disgust, and surprise in triggering user engagement when promoting diverse products with visually captivating content. The findings highlight the importance of balancing the intensity of muscle movement to streamline the interplay between technology, human behaviour, and digital communication.
Introduction The rapid advancement of artificial intelligence (AI) has enabled widespread digital transformation and given rise to avatars, content-generation AI, and computer-generated universes that promote unparalleled levels of social connectivity (Ahn et al., 2022; Miao et al., 2022). Content-generation AI systems such as ChatGPT and DALL·E2 have the capability to generate textual and pictorial content, allowing for the creation of immersive and engaging content across various industries. This revolutionization enables more immersive interactions with consumers in various industries, such as entertainment (Kim and Yoo, 2021) and retailing (Chuah and Yu, 2021). Through far-reaching and impactful non-human digital communications that simulate a more realistic experience, this transformative technology results in enhanced customer engagement (Rahman et al., 2023). Although anthropomorphic characters have been met with criticism over uneasiness and eeriness resulting from the uncanny valley effect (Lou et al., 2022; Mori, 1970), the increasing sophistication of computer graphics has begun to shift public attitudes towards humanlike characters, demonstrating that viewers may not always respond negatively. For instance, computer-generated imagery (CGI) influencers, such as Lil Miquela and Imma, are a remarkable innovation that leverages the power of AI to create digital personas that look and behave like real humans, thus pushing the boundaries of what is possible in the realm of virtual media (Drenten and Brooks, 2020).
In addition to their curated online presence, CGI influencers have the potential to express emotions in a way that avatars cannot. The use of animation and rendering techniques allows CGI influencers to mimic the subtleties of human expressions (Ahn et al., 2022). CGI influencers can consistently convey a broad spectrum of emotions, which is a feat that may prove challenging for their human counterparts to maintain. Adding on to the six basic emotions (i.e., happiness, sadness, surprise, fear, anger, and disgust) identified by Ekman (1992), a more sophisticated approach for assessing facial expressions is the examination of facial muscle movements through action units (AUs) (Ngan and Yu, 2019). Prior research has demonstrated the utility of AUs in enabling an objective deconstruction of potential facial muscle activations that lead to specific emotional expressions (Schoner-Schatz et al., 2021), such as in the context of service encounters (Ngan and Yu, 2019). This offers a more nuanced and detailed understanding of the emotions being exhibited by computer-generated imagery influencers and their impact on user engagement.
Conclusion 6.1. Theoretical contribution
Besides the commonly studied positive emotions (e.g., happiness) (Baek et al., 2022; Campos et al., 2013), this research uncovers the effectiveness of specific emotions such as surprise, sadness, and disgust in distinct situational contexts. Specifically, it contributes to the understanding of AI surprise by examining the nuanced variations in different intensities of AUs (Chuah and Yu, 2021). Additionally, it reveals insights into less commonly observed expressions on social media, such as sadness and disgust. By analysing facial muscle movements, the research delves into the subtle changes within specific muscles that are associated with each emotion. Besides focusing solely on the overall intensity of emotions (Bharadwaj et al., 2022; Lin et al., 2021), this approach provides a deeper understanding of the intricacies involved in emotional expression. |