مقاله انگلیسی رایگان در مورد هماهنگی میتوکندریایی و هسته ای – الزویر ۲۰۲۰

مقاله انگلیسی رایگان در مورد هماهنگی میتوکندریایی و هسته ای – الزویر ۲۰۲۰

 

مشخصات مقاله
ترجمه عنوان مقاله دو ژنوم، یک سلول: هماهنگی میتوکندریایی و هسته ای از طریق مسیرهای اپی ژنتیکی
عنوان انگلیسی مقاله Two genomes, one cell: Mitochondrial-nuclear coordination via epigenetic pathways
انتشار مقاله سال ۲۰۲۰
تعداد صفحات مقاله انگلیسی ۱۵ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۶٫۱۳۴ در سال ۲۰۱۹
شاخص H_index ۴۳ در سال ۲۰۲۰
شاخص SJR ۳٫۳۴۳ در سال ۲۰۱۹
شناسه ISSN ۲۲۱۲-۸۷۷۸
شاخص Quartile (چارک) Q1 در سال ۲۰۱۹
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط زیست شناسی
گرایش های مرتبط ژنتیک، علوم سلولی و مولکولی
نوع ارائه مقاله
ژورنال
مجله  متابولیسم مولکولی – Molecular Metabolism
دانشگاه Max-Planck-Institute for Immunobiology und Epigenetics, Department of Chromatin Regulation, Stübeweg 51, 79108, Freiburg im Breisgau, Germany
کلمات کلیدی اپی ژنتیک، متابولیت ها، آنزیم ها، ژنومیک، کروماتین، هیستون ها
کلمات کلیدی انگلیسی Epigenetics; Metabolites; Enzymes; Genomic; Chromatin; Histones
شناسه دیجیتال – doi
https://doi.org/10.1016/j.molmet.2020.01.006
کد محصول E14660
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
۱٫ Introduction
۲٫ Histone acetylation
۳٫ Histone deacetylation
۴٫ Histone methylation
۵٫ DNA methylation
۶٫ Histone demethylation
۷٫ DNA demethylation
۸٫ Communication involving histones and their marks
۹٫ RNA modification pathways in mitochondria
۱۰٫ Conclusions
Acknowledgements
Conflicts of interest
References

بخشی از متن مقاله:
Abstract

Background: Virtually all eukaryotic cells contain spatially distinct genomes, a single nuclear genome that harbours the vast majority of genes and much smaller genomes found in mitochondria present at thousands of copies per cell. To generate a coordinated gene response to various environmental cues, the genomes must communicate with each another. Much of this bi-directional crosstalk relies on epigenetic processes, including DNA, RNA, and histone modification pathways. Crucially, these pathways, in turn depend on many metabolites generated in specific pools throughout the cell, including the mitochondria. They also involve the transport of metabolites as well as the enzymes that catalyse these modifications between nuclear and mitochondrial genomes. Scope of review: This study examines some of the molecular mechanisms by which metabolites influence the activity of epigenetic enzymes, ultimately affecting gene regulation in response to metabolic cues. We particularly focus on the subcellular localisation of metabolite pools and the crosstalk between mitochondrial and nuclear proteins and RNAs. We consider aspects of mitochondrial-nuclear communication involving histone proteins, and potentially their epigenetic marks, and discuss how nuclear-encoded enzymes regulate mitochondrial function through epitranscriptomic pathways involving various classes of RNA molecules within mitochondria. Major conclusions: Epigenetic communication between nuclear and mitochondrial genomes occurs at multiple levels, ultimately ensuring a coordinated gene expression response between different genetic environments. Metabolic changes stimulated, for example, by environmental factors, such as diet or physical activity, alter the relative abundances of various metabolites, thereby directly affecting the epigenetic machinery. These pathways, coupled to regulated protein and RNA transport mechanisms, underpin the coordinated gene expression response. Their overall importance to the fitness of a cell is highlighted by the identification of many mutations in the pathways we discuss that have been linked to human disease including cancer.

Introduction

To fit within the confined space of a eukaryotic nucleus, a cell’s genome must be efficiently compacted, but in a highly ordered manner that maintains accessibility to the genetic information. This is achieved by DNA complexing with histone proteins to form nucleosome structures, which in turn further compact to form chromatin that ultimately packages entire chromosomes. Importantly, chromatin is not an inert packaging structure but rather an instructive scaffold capable of responding to various cues to regulate access of the DNA to different cellular machineries. This accessibility is fundamentally regulated by ATP-dependent chromatin remodelling activities and by covalent modification of both DNA and histone proteins. These modifications are commonly referred to as “epigenetic” modifications. Furthermore, in addition to epigenetics, the emerging field of epitranscriptomics is now adding numerous modifications of RNA molecules to the “modification repertoire,” thereby expanding our current view of epigenetics and how it regulates all DNA processes, in particular gene expression [1]. DNA and histone modifications regulate gene expression by modulating chromatin accessibility and/or providing binding sites for regulatory proteins. To date, more than 100 post-translational modifications (PTMs) have been detected on histones, including acetylation, methylation, ubiquitylation, phosphorylation, citrullination, and O-GlcNAcylation. Of these, acetylation and methylation are by far the best-studied and most characterised histone modifications (for review, see [2,3]).

ثبت دیدگاه