مقاله انگلیسی رایگان در مورد الگوریتم اندازه گیری سرعت یکپارچه – IEEE 2019

IEEE

 

مشخصات مقاله
ترجمه عنوان مقاله الگوریتم اندازه گیری سرعت یکپارچه مبتنی بر جریان نوری و تغییر ویژگی ثابت مقیاس
عنوان انگلیسی مقاله Integrated Velocity Measurement Algorithm Based on Optical Flow and Scale-Invariant Feature Transform
انتشار مقاله سال ۲۰۱۹
تعداد صفحات مقاله انگلیسی ۱۱ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه IEEE
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۴٫۶۴۱ در سال ۲۰۱۸
شاخص H_index ۵۶ در سال ۲۰۱۹
شاخص SJR ۰٫۶۰۹ در سال ۲۰۱۸
شناسه ISSN ۲۱۶۹-۳۵۳۶
شاخص Quartile (چارک) Q2 در سال ۲۰۱۸
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط مهندسی برق، مهندسی کامپیوتر
گرایش های مرتبط ابزار دقیق، مهندسی الگوریتم و محاسبات
نوع ارائه مقاله
ژورنال
مجله / کنفرانس دسترسی – IEEE Access
دانشگاه  Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
کلمات کلیدی فیلتر کالمن مکعبی، جریان نوری، تصحیح خطای باقی مانده، تغییر ویژگی ثابت مقیاس
کلمات کلیدی انگلیسی Cubature Kalman filter, optical flow, residual error correction, scale-invariant feature transform
شناسه دیجیتال – doi
https://doi.org/10.1109/ACCESS.2019.2948837
کد محصول  E13897
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
I. Introduction
II. Algorithm Introduction
III. Model and Proposed Strategy
IV. Experiment Results and Discussion
V. Conclusion
Authors
Figures
References

 

بخشی از متن مقاله:
Abstract

The pyramid Lucas-Kanade (LK) optical flow algorithm has been widely used in velocity measurement applications. However, these applications are limited by some shortcomings of the algorithm, such as its slow calculation speed and susceptibility to illumination changes. To solve these problems, a data fusion scheme based on the scale-invariant feature transform (SIFT) and optical flow is proposed to alleviate the dependence of the optical flow on the illumination conditions. In addition, an improved cubature Kalman filter (CKF) based on multi-rate residual correction (CKF-MRC) is proposed to solve the problem of inconsistency between the sampling frequencies of the SIFT and the optical flow, and takes full advantage of the high sampling frequency of SIFT. The experimental results demonstrate that the proposed CKF-MRC method can effectively improve the accuracy of velocity measurement under variable illumination conditions with a high sampling frequency.

Introduction

In recent years, rapid progress has been made in the development of unmanned aerial vehicle (UAV) technology. UAVs have been widely used in fields such as reconnaissance, military strikes, aerial photography, mapping and emergency rescue [1]–[۵]. In addition, the optical flow navigation method inspired by insect motion is playing an increasingly important role in navigation in GPS-signal-denied environments. Optical flow (OF) can be regarded as the 2D projection movement of the 3D motion of observed objects [6]–[۱۰]. The bioinspired OF navigation scheme has been developed accordingly, with superior properties that include small device volume, low power requirements, high autonomy and low cost, which are especially important in UAV navigation applications [11]–[۱۳]. When OF is used as the sole navigation scheme, it can easily be disturbed by the surrounding environment, which leads to reduced navigation accuracy. Many researchers have made corresponding improvements to make the OF algorithm conform to a variety of environments. For example, [14] proposed an information fusion method based on a microelectromechanical systems-based inertial measurement unit (MEMS-IMU) and OF, which was used to correct the MEMSIMU’s attitude when it diverged; simulation results showed that modification of the vehicle attitude in combination with OF provided good performance, with the advantages of smaller errors, slow divergence and improved robustness.

ارسال دیدگاه

نشانی ایمیل شما منتشر نخواهد شد.