مشخصات مقاله | |
ترجمه عنوان مقاله | مدل وابسته به فرکانس مبتنی بر اندازه گیری ترانسفورماتور HVDC برای مطالعات جریان الکترومغناطیسی |
عنوان انگلیسی مقاله | Measurement-based frequency-dependent model of a HVDC transformer for electromagnetic transient studies |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 11 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
3.782 در سال 2019 |
شاخص H_index | 104 در سال 2020 |
شاخص SJR | 1.037 در سال 2019 |
شناسه ISSN | 0378-7796 |
شاخص Quartile (چارک) | Q1 در سال 2019 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی برق |
گرایش های مرتبط | ماشین های الکتریکی، مهندسی الکترونیک |
نوع ارائه مقاله |
ژورنال |
مجله | تحقیقات سیستم های قدرت الکتریکی – Electric Power Systems Research |
دانشگاه | SINTEF Energy Research, Trondheim, NO-7465, Norway |
کلمات کلیدی | ترانسفورماتور HVDC، اندازه گیری، مدل جعبه سیاه، جریان های الکترومغناطیسی |
کلمات کلیدی انگلیسی | HVDC transformer، Measurements، Black box model، Electromagnetic transients |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.epsr.2019.106141 |
کد محصول | E14873 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction 2. HVDC transformer 3. Work strategy 4. Measurements, validation (frequency domain) 5. Modeling, validation (frequency domain) 6. Time domain validation 7. Transferred voltage at 50 Hz 8. Magnetizing current 9. Comparison against simplified model 10. Discussion 11. Conclusions Conflict of interest Acknowledgement References |
بخشی از متن مقاله: |
Abstract
A wide-band, frequency-dependent five-terminal model is developed that represents one HVDC transformer unit in the French-English IFA2000 HVDC interconnection. Three such interconnected 1-ph units constitute one 3-ph transformer bank needed in 12-pulse conversion. The model is obtained via admittance frequency sweep measurements on the transformer’s terminals, including common-mode measurements to capture the high-impedance coupling to earth at lower frequencies. The data set is modified to reduce the magnetizing current to a realistic level by a novel eigenvalue scaling procedure. The final data set is subjected to modeling by a stable and passive rational model while utilizing a mode-revealing transformation to retain the accuracy of the small eigenvalues that are related to the high-impedance coupling to earth. The paper describes details related to the measurements and modeling steps as well as the many intermediate accuracy validations that were done. Also is described challenges in the measurements that resulted due to interference of the measurements by a nearby 400 kV overhead line. The model is applied in a time domain simulation of the complete HVDC link in normal operation where voltage waveforms resulting from line commutations are compared against those by a classical model with added stray capacitances. Introduction HVDC transformers are together with thyristor valves the fundamental components in any LCC-type HVDC converter. The protection of these transformers is therefore essential for the reliable operation of the HVDC link. Overvoltages due to switching events, lightning impulses and in-station flashovers on the AC side result in steep-fronted overvoltages that stress the transformer AC side insulation parts, and voltages are also transferred to the DC-side where they stress and interfere the thyristor components [1]. Conversely, line faults and lightning strokes to a DC overhead line may result in overvoltages that impose stresses on the transformer DC-side terminals. The protection of HVDC substation against overvoltages therefore requires insulation co-ordination studies to be performed to determine the appropriate location of surge arresters [1]. Insulation co-ordination studies requires the use of models with adequate accuracy up to several hundred kHz in order to represent the actual waveshapes of the overvoltages. The representation of the HVDC transformer is a main obstacle in such studies since frequency-dependent transformer models are in general not available. Therefore, simplified models are usually employed, often consisting of a 50 Hz model in combination with lumped capacitors. |