مقاله انگلیسی رایگان در مورد جمع کردن شبکه های اجتماعی مبتنی بر API: آرشیو وب – اسپرینگر ۲۰۱۶
مشخصات مقاله | |
انتشار | مقاله سال ۲۰۱۶ |
تعداد صفحات مقاله انگلیسی | ۱۸ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
منتشر شده در | نشریه اسپرینگر |
نوع مقاله | ISI |
عنوان انگلیسی مقاله | API-based social media collecting as a form of web archiving |
ترجمه عنوان مقاله | جمع کردن شبکه های اجتماعی مبتنی بر API به عنوان شکلی از آرشیو وب |
فرمت مقاله انگلیسی | |
رشته های مرتبط | مهندسی فناوری اطلاعات |
گرایش های مرتبط | اینترنت و شبکه های گسترده |
مجله | مجله بین المللی کتابخانه های دیجیتال – International Journal on Digital Libraries |
دانشگاه | GW Libraries – The George Washington University – USA |
کلمات کلیدی | رسانه های اجتماعی، آرشیو وب، آرشیو، جمع آوری داده ها، توییتر |
کلمات کلیدی انگلیسی | Social media, Web archiving, Archives, Data collection, Twitter |
کد محصول | E7753 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
بخشی از متن مقاله: |
۱ Introduction
Social media is increasingly a topic of study across a range of disciplines. The content, communication patterns, technology, communities, and the roles and impact of social media have all emerged as areas of interest to researchers in fields from computer science and medicine to business, economics, and the humanities. Conferences such as the International Conference on Web and Social Media, Web Science, and Association of Internet Researchers provide substantial programs focused on web and social media research, methods, and data collection. Likewise, granting agencies such as the National Science Foundation (NSF) are supporting research both about and using social media.1 Social Feed Manager (SFM) is an application originally intended to support the needs of scholars collecting Twitter data for their research [1–۳]. SFM was developed by a team at George Washington University (GW) Libraries2 and has successfully supported scholars at GW and a number of other institutions since 2012. SFM uses the Twitter API to collect tweets from an identified user or to filter the stream of all tweets based on user, keywords, or geolocation. Since its creation in 2012 to automate data collection for researchers, SFM has grown to become essential to the success of a wide variety of research projects at GW. GW Libraries has used SFM to collect tweets on behalf of faculty, graduate student researchers, archivists, librarians, undergraduate students, and non-faculty researchers. Scholarly research has been conducted on tweets collected by SFM in a diverse array of disciplines including political science, media studies, business, women’s studies, counterterrorism, and epidemiology, among others. For example, SFM has been used to • Collect tweets to study the role of the gender of candidates for U.S. Congress in public responses to the candidate [4]. • Collect tweets from ISIS-affiliated individuals to analyze how ISIS uses Twitter to reach Western and non-Western audiences. • Preserve the historical Twitter presence of the Corcoran School of Art and Design at the time of its merger with GWU. • Provide a Twitter sample stream dataset (estimated 0.5% sample of all tweets) from which tweets with the #YesAllWomen hashtag were extracted to study Twitter’s use in social activism. • Enable students in a quantitative methods of political science course to easily gather tweets from members of Congress for analysis. • Collect GW-related tweets, recognizing that social media content is now an indispensable component of a complete historical portrait of the contemporary GW community. • Collect Sina Weibo content pertaining to China’s anticorruption campaign for current and future China Studies scholars. • Proactively collect 2016 presidential candidates’ tweets, anticipating potential research value. |