مشخصات مقاله | |
ترجمه عنوان مقاله | افزایش عملکرد سیستم خنک کننده قفسه ای با استفاده از مبدل حرارتی صفحه جریان متقاطع |
عنوان انگلیسی مقاله | Performance enhancement of cabinet cooling system by utilizing cross-flow plate heat exchanger |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 9 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
8.018 در سال 2019 |
شاخص H_index | 163 در سال 2020 |
شاخص SJR | 2.730 در سال 2019 |
شناسه ISSN | 0196-8904 |
شاخص Quartile (چارک) | Q1 در سال 2019 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی مکانیک |
گرایش های مرتبط | تبدیل انرژی، تاسیسات حرارتی و برودتی |
نوع ارائه مقاله |
ژورنال |
مجله | مدیریت و تبدیل انرژی – Energy Conversion and Management |
دانشگاه | Key Laboratory of Thermo-Fluid Science and Engineering, MOE, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China |
کلمات کلیدی | روش ε-NTU، سیستم خنک کننده قفسه ای، جریان متقاطع، جریان معکوس، مقاومت حرارتی |
کلمات کلیدی انگلیسی | ε-NTU method، Cabinet cooling system، Cross-flow، Counter-flow، Thermal resistance |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.enconman.2020.112854 |
کد محصول | E14975 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract Nomenclature 1. Introduction 2. Methods 3. Results and discussion 4. Conclusions Credit authorship contribution statement Declaration of Competing Interest Acknowledgements References |
بخشی از متن مقاله: |
Abstract
Gas-gas plate heat exchanger is an important component to remove heat generated from electronic devices in the cabinet cooling system. The counter-flow plate heat exchanger is usually used due to its higher heat transfer performance than the cross-flow plate heat exchanger. However, in the cabinet cooling system, the overall dimensions for the heat exchanger is limited. Therefore, it is necessary to consider the overall dimensions of the system during heat exchanger design, but the traditional thermal design method of heat exchanger doesn’t consider the effect of system parameters. In this paper, a cross-flow plate heat exchanger is proposed to improve the cooling performance of cabinet cooling system, and is compared with the counter-flow plate heat exchanger. The ε-NTU method and effectiveness-thermal resistance method are applied to evaluate the performance. It is found that for large width of cabinet cooling system, the system with cross-flow plate heat exchanger has higher cooling performance and lower thermal resistance than the system with counter-flow plate heat exchanger. When the width is 700 mm, the cooling capacity of the two systems are 176.13 W/K and 138.95 W/K, respectively. The dimensionless thermal resistance can characterize the irreversibility of the heat transfer at constant mass flow rate. Introduction Plate heat exchangers are widely used in energy consuming and handling industries [1]. Generally, plate heat exchangers are used for liquid–liquid heat exchange [2]. Imran et al. [3] optimized liquid–liquid plate heat exchanger. The overall dimensions of the heat exchanger were independently considered in their research. Miao et al. [4] numerically studied liquid–liquid plate heat exchangers. The heat exchanger was counter-flow plate heat exchanger. Two methods were utilized to get simulation results, respectively. The results of grey-box method were better. Kumar et al. [5] experimentally studied the liquid–liquid plate heat exchangers and obtained correlation based on their experimental data, in which the overall dimensions of the measured heat exchangers were constant. Yang et al. [6] obtained correlation based on their experimental data and empirical correlations in open literature. The overall dimensions of heat exchangers in their work were varied. Counter-flow plate heat exchanger also could be applied for two-phase heat exchange [7] and the heat exchangers in organic Rankine cycle could be counter-flow plate heat exchangers for better performance [8]. However, due to the primary heat transfer surfaces and light weight the plate heat exchanger was developed for gas–gas heat exchange [9] and even for liquid–gas heat exchange [10]. Cross-flow arrangement was convenient for liquid–gas plate heat exchanger [11]. High temperature gas–gas heat exchangers were mainly applied for the microturbine recuperated cycle system [12] and air preheater of the fossil fuel power system [13]. Recuperators for micro gas turbine was reviewed by Xiao et al. [14] recently. Wang et al. [15] improved the performance of air preheater by optimizing geometrical parameters of primary surface. |