مشخصات مقاله | |
انتشار | مقاله سال ۲۰۱۷ |
تعداد صفحات مقاله انگلیسی | ۵۵ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
منتشر شده در | نشریه الزویر |
نوع مقاله | ISI |
عنوان انگلیسی مقاله | Data mining in educational technology classroom research: Can it make a contribution? |
ترجمه عنوان مقاله | داده کاوی در تحقیقات کلاس درس فناوری آموزشی: آیا می تواند کمک کند؟ |
فرمت مقاله انگلیسی | |
رشته های مرتبط | علوم تربیتی |
گرایش های مرتبط | تکنولوژی آموزشی |
مجله | کامپیوتر و آموزش و پرورش – Computers & Education |
دانشگاه | University of Cyprus – Cyprus |
کلمات کلیدی | داده کاوی آموزشی، تحقیقات تکنولوژی آموزشی، استخراج قوانین شرکت، ارائه فازی |
کلمات کلیدی انگلیسی | Educational data mining, educational technology research, association rules mining, fuzzy representations |
کد محصول | E7817 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
بخشی از متن مقاله: |
Introduction
Data mining has long been used in marketing, advertising, health, engineering, and information systems. At its core, data mining is an inductive, analytic, and exploratory approach, which is concerned with knowledge discovery through identification of patterns within large sets of data. In the last 10 years, the field of Educational Data Mining (EDM) has emerged as a distinct area of research concerned with using data mining techniques to answer educational questions, such as, “What are the difficulties students encounter during a learning activity?”, “What sequences of computer interactions lead to successful problem-solving performance?”, and “What sequences of actions characterize high performers and low performers in problem-solving activity?” EDM can also provide new insights into “wicked” educational problems, such as, “What are the differences in the ways students experience learning,” and “How can learning designs account for variations in students’ learning experiences?” In particular, EDM is concerned with developing methods for analyzing data from an educational system in order to detect patterns in large datasets that would otherwise be very difficult or even impossible to analyze due to the vast volume of data within which they exist (Romero & Ventura, 2013). Consequently, results from data mining can be used for deciding about how to improve the teaching and learning process as well as how to design or redesign a learning environment (Romero & Ventura, 2007; Ingram, 1999). Data mining techniques have been mostly used within the context of web-based or e-learning education in order to: (a) suggest activities, resources, learning paths, and tasks for improving learners’ performance and adapting learning experience (Tang & McCalla, 2005); (b) provide feedback to teachers and instructional designers in regards to learners’ difficulties with the content and structure of a course, so that revisions can be made to facilitate students’ learning (Merceron & Yacef, 2010; Zaiane & Luo, 2001); (c) predict learners’ performance (Ahmed & Elaraby, 2014); and (d) inform administrators about the effectiveness of instructional programs, so that better planning and allocation of human and material resources can be achieved (Romero & Ventura, 2007). |