مشخصات مقاله | |
ترجمه عنوان مقاله | بهینه سازی توان برای انتشار پیام در شبکه های حسگر زیر آب فرصت طلب |
عنوان انگلیسی مقاله | On the throughput optimization for message dissemination in opportunistic underwater sensor networks |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 16 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.205 در سال 2019 |
شاخص H_index | 119 در سال 2020 |
شاخص SJR | 0.592 در سال 2019 |
شناسه ISSN | 1389-1286 |
شاخص Quartile (چارک) | Q1 در سال 2019 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی فناوری اطلاعات، مهندسی کامپیوتر |
گرایش های مرتبط | شبکه های کامپیوتری، مهندسی الگوریتم و محاسبات |
نوع ارائه مقاله |
ژورنال |
مجله | شبکه های کامپیوتری – Computer Networks |
دانشگاه | School of Computer Science and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China |
کلمات کلیدی | شبکه های حسگر زیر آب فرصت طلب، انتشار پیام، بهینه سازی توان شبکه، تاخیر انتشار |
کلمات کلیدی انگلیسی | Opportunistic underwater sensor networks، Message dissemination، Network throughput optimization، Propagation delay |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.comnet.2020.107097 |
کد محصول | E14645 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction 2. Related work 3. System model and problem formulation 4. Problem analysis 5. Dissemination algorithm 6. Algorithm analysis 7. Simulation evaluation 8. Conclusions CRediT authorship contribution statement Declaration of Competing Interest Acknowledgments Appendix A. Expression Appendix B. The Setting Supplementary material Appendix C. Supplementary materials Research Data References |
بخشی از متن مقاله: |
Abstract
Opportunistic underwater sensor networks (OUSNs) are deployed for various underwater applications, such as underwater creatures tracking and tactical surveillance. However, the storage capacity of the sensor nodes in such networks may be insufficient, especially when a wealth of data messages are generated rapidly in some emergency response applications. The message dissemination in OUSNs therefore may differ significantly from those in wireless sensor networks or delay-tolerant networks, where network throughput should be taken as one of the primary objectives of network performance. To this end, the strategies for message storing, disseminating and discarding are investigated, and a Message Dissemination Approach for Storage-Limited (MDA-SL) OUSNs is proposed. In MDA-SL, the messages are preferred to be disseminated to the nodes with higher speed or larger residual storage. In addition, the copies of newer messages are inclined to be discarded when their message holders’ storage is full. Simulation results demonstrate the excellent performance of MDA-SL, showing that it can achieve satisfactory network throughput with propagation delay being restricted according to the diverse application requirements. Introduction With the broad deployments of mobile sensor nodes, opportunistic mobile sensor networks (OMSNs) [1,2] are introduced to conduct large-scale sensing at a lower cost compared to that of a ubiquitous static infrastructure of sensing devices. Because of the node mobility, however, the available contacts between nodes may be scarce and short, leading to some unstable communication paths. Opportunistic message dissemination techniques enable the network nodes to communicate in an environment where the contemporaneous end-to-end paths are unavailable or unstable, by allowing a data message to be transferred from source to destination in discrete hops even when an end-to-end communication path never emerges. As a derivative form of OMSNs, the opportunistic underwater sensor networks (OUSNs) [3] technology enables various underwater applications, such as underwater creatures tracking [4] and tactical surveillance [5]. However, compared with massive collected data, the storage capacities of nodes are usually insufficient [6,7]. What is worse, the network throughput (which is defined as the total number of data messages received per unit time by the des- ∗ Corresponding author. tinations of all the multi-hop flows in the network) is significantly restricted because the capacity of nodal storage modules is extremely limited (the space memory is even measured in KB [8], e.g., the chip CC2430 has a flash memory of 128 KB [9]). |