مشخصات مقاله | |
ترجمه عنوان مقاله | یک مدل یادگیری عمیق ترکیبی با ترکیب شبکه عصبی کانولوشن و شبکه عصبی مکرر برای تشخیص آتش سوزی جنگل |
عنوان انگلیسی مقاله | A hybrid deep learning model by combining convolutional neural network and recurrent neural network to detect forest fire |
انتشار | مقاله سال 2022 |
تعداد صفحات مقاله انگلیسی | 18 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه اسپرینگر |
نوع نگارش مقاله |
مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | JCR – Master Journal List |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
3.158 در سال 2020 |
شاخص H_index | 80 در سال 2022 |
شاخص SJR | 0.716 در سال 2020 |
شناسه ISSN | 1573-7721 |
شاخص Quartile (چارک) | Q1 در سال 2020 |
فرضیه | ندارد |
مدل مفهومی | دارد |
پرسشنامه | ندارد |
متغیر | دارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر – جغرافیا، ایمنی و آتش نشانی |
گرایش های مرتبط | هوش مصنوعی – مهندسی نرم افزار – مخاطرات محیطی |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | ابزارها و برنامه های چند رسانه ای – Multimedia Tools and Applications |
دانشگاه | Department of CSE, National Institute of Technology Patna, India |
کلمات کلیدی | آتش سوزی جنگل – یادگیری عمیق – شبکه عصبی کانولوشن – شبکه عصبی تکراری |
کلمات کلیدی انگلیسی | Forest fire – Deep learning – Convolutional neural network – Recurrent neural network |
شناسه دیجیتال – doi |
https://doi.org/10.1007/s11042-022-13068-8 |
کد محصول | e16622 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1 Introduction 2 Literature survey 3 Dataset details and investigation protocol 4 Proposed method 5 Experimental results and analysis 6 Conclusion and future work References |
بخشی از متن مقاله: |
Abstract Forest fire poses a serious threat to wildlife, environment, and all mankind. This threat has prompted the development of various intelligent and computer vision based systems to detect forest fire. This article proposes a novel hybrid deep learning model to detect forest fire. This model uses a combination of convolutional neural network (CNN) and recurrent neural network (RNN) for feature extraction and two fully connected layers for final classification. The final feature map obtained from the CNN has been flattened and then fed as an input to the RNN. CNN extracts various low level as well as high level features, whereas RNN extracts various dependent and sequential features. The use of both CNN and RNN for feature extraction is proposed in this article for the first time in the literature of forest fire detection. The performance of the proposed system has been evaluated on two publicly available fire datasets—Mivia lab dataset and Kaggle fire dataset. Experimental results demonstrate that the proposed model is able to achieve very high classification accuracy and outperforms the existing state-of-the-art results in this regard. Introduction Forest fire can potentially result in a large number of environmental disasters, causing vast economical and ecological losses apart from jeopardising human lives. These fires pose a serious threat to people, wildlife, and the environment. To preserve the natural resources and protect the properties and human lives, forest fire detection has become very crucial. It has lead to increasing number of research explorations in this area around the world. Early and accurate detection of forest fires is essential for mitigating the effect of the fire as once a forest fire spreads to a large area it becomes very difficult to control it and might result in a catastrophe. In its early stage any forest fire is relatively small and easy to control. Fire and smoke detector sensors can easily be installed in indoor environments, it is generally not the case for forest areas. Sensors also require the fire to burn for a while before they can be detected. On the contrary, vision based devices can be used to detect fire in real life and they can be deployed in any area by using different means. These systems are also cheap and easy to install. Conclusion and future work This article proposes a combination of CNN and RNN based deep learning method for forest fire detection. The evaluation of the performance of the present system has been done on two different public datasets. The proposed forest fire detection system outperforms the existing studies in this regard. The present work also overcomes various drawbacks of the existing systems. It is evident from the high classification accuracy of the present system that the present system can be employed to detect forest fires in the real world scenarios. The present work shall provide fresh insight to the researchers in carrying out the new researches on fire detection using computer vision based techniques. In future, the attempt will be made to carry out the research work in this problem area by employing other sophisticated deep learning techniques. The plan is also there to develop a fire detection system in non-forest areas, especially fires that occur in residential areas and industrial areas. Other possible future directions of this research work include the exploration of the possibility of employing the proposed model for low resolution satellite images covering large geographical areas. |