مقاله انگلیسی رایگان در مورد سنتز کامپوزیت های هیدروژل مبتنی بر نانوذرات صمغ اقاقیا-نقره – اسپرینگر 2022

 

مشخصات مقاله
ترجمه عنوان مقاله سنتز کامپوزیت های هیدروژل مبتنی بر نانوذرات صمغ اقاقیا-نقره و فعالیت ضد باکتریایی آنها
عنوان انگلیسی مقاله Synthesis of gum acacia-silver nanoparticles based hydrogel composites and their comparative anti-bacterial activity
انتشار مقاله سال 2022
تعداد صفحات مقاله انگلیسی  15 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه اسپرینگر
نوع نگارش مقاله
مقاله پژوهشی (Research article)
مقاله بیس این مقاله بیس میباشد
نمایه (index) JCR – Master Journal List – Scopus
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
2.813 در سال 2020
شاخص H_index 60 در سال 2022
شاخص SJR 0.437 در سال 2020
شناسه ISSN 1572-8935
شاخص Quartile (چارک) Q2 در سال 2020
فرضیه ندارد
مدل مفهومی دارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط داروسازی – پزشکی – بیوتکنولوژی
گرایش های مرتبط نانوفناوری دارویی – بیوتکنولوژی پزشکی – بیوتکنولوژی میکروبی
نوع ارائه مقاله
ژورنال
مجله / کنفرانس مجله تحقیقات پلیمر – Journal of Polymer Research
دانشگاه Department of Biotechnology, Chandigarh University, India
کلمات کلیدی پلیمر زیستی – نانو ذرات نقره – هیدروژل های کامپوزیت – پیوند-کوپلیمریزاسیون – تابش مایکروویو – خواص ضد میکروبی
کلمات کلیدی انگلیسی Biopolymer – Silver nanoparticles – Composite hydrogels – Graft-copolymerization – Microwave irradiation – Antimicrobial properties
شناسه دیجیتال – doi
https://doi.org/10.1007/s10965-022-02978-8
کد محصول e16651
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:

Abstract

Introduction

Materials and methods

Characterizations

Results and discussion

Optimized reaction conditions

FTIR spectra analysis

SEM–EDS analysis

XRD analysis

TGA analysis

Conclusion

Declarations

References

 

بخشی از متن مقاله:

Abstract

     An interpenetrating polymer network (IPN) containing gum acacia (GA), poly(methacrylic acid) (MAA), and poly(acrylic acid) (AA) was developed using a two-step aqueous polymerization method. Firstly, semi-IPNs were produced by radical polymerization of MAA chains onto GA in the presence of ammonium persulfate as a free radical initiator and N, N′-methylene-bisacrylamide (MBA) as a cross-linking agent using a microwave heating. To obtain a semi-IPN with a higher swelling percentage, several reaction parameters such as initiator, monomer, and crosslinker concentrations were varied. The percentage swelling (%S) was highly dependent upon the reaction conditions. The optimal reaction conditions for maximal %S were 2.55 × 10–2 mol/L initiator concentration, 12 mL solvent, 0.424 × 10–3 mol/L of monomer, and 2.16 × 10–2 mol/L cross-linker concentration, according to the findings. GA-g-poly(MAA) was the name to given to the semi-IPN. Second, IPN was created by grafting AA chains onto a GA-g-poly(MAA) matrix that had been optimized. The IPN was named as a GA-g-poly(MAA-IPN-AA). The reduction of silver ions to silver nanoparticles (AgNPs) was carried out by heating the mixture of flower extract of Koelreuteria apiculate under microwave radiation.

Introduction

     Hydrogels are three-dimensional (3D) networks formed by the crosslinking of hydrophilic polymers [1, 2]. They might swell while maintaining their network structure by absorbing signifcant amounts of water or biological fluids. The inclusion of hydrophilic groups such as -OH, -CONH, -CONH2, -COOH, and -SO3H along the polymer chain contributes to their ability to absorb a large amount of water [1]. Polysaccharide hydrogel networks have received a lot of attention in recent years [3–5]. The physico-chemical properties of these hydrogels frequently differ significantly from those of the macromolecular constituents. Hydrogel characteristics can also be altered utilizing a range of physical and chemical crosslinking techniques [3, 6]. Various researchers have examined a number of polymeric systems to create hydrogels [7]. The polymer composition can be classified as natural polymeric hydrogels, synthetic polymer hydrogels, and or a combination of both [7]. Because of their non-toxicity, low cost, permeability, and biocompatibility, hydrogels have gotten a lot of attention in a variety of sectors [8–10].

Conclusion

     Antimicrobial materials have been studied extensively in response to rising microbial resistance to traditional antibiotics and disinfectants. Natural polysaccharidebased hydrogels and their composites containing metal nanoparticles could be suitable for antibacterial applications in some cases. Using a microwave irradiation approach, we were able to successfully synthesis GA-gpoly(MAA) and GA-g-poly(MAA-IPN-AA) based hydrogels from GA. APS and MBA being used as initiator and cross-linker, respectively. To achieve maximum %S of semi-IPN (588%) and IPN (500%), diferent parameters were optimized. The formation of cross-linked hydrogels and hydrogel composites with AgNPs was successfully demonstrated using FTIR analysis. The SEM investigation of hydrogel networks reveals a variety of morphologies, which could be attributed to structural diferences between semi-IPN, IPN, and their composites with AgNPs. SemiIPN, IPN and their composite showed superb antibacterial potential against E. coli, M. luteus, P. aeruginosa, Rihzobium species, and S. aureus, and may be used to treat a variety of infected efuents. Such interconnected hydrogels will give superior material properties, particularly in biomedical research, to prevent biomaterialassociated infections as well as general pathogenic invasions into the body. The synthesized hydrogel samples will lead to enhanced applications in the future, as well as a deeper knowledge of material interactions. The eforts to improve the property profle of cross-linked hydrogels are still on, with the hope of improving overall performance in terms of water uptake capacity, biocompatibility, and biodegradability.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا