مقاله انگلیسی رایگان در مورد بهبود مدیریت جنبه و بازنمایی اطلاعاتی با هوش مصنوعی – الزویر ۲۰۲۲

مقاله انگلیسی رایگان در مورد بهبود مدیریت جنبه و بازنمایی اطلاعاتی با هوش مصنوعی – الزویر ۲۰۲۲

 

مشخصات مقاله
ترجمه عنوان مقاله تناسب شناختی تطبیقی: هوش مصنوعی مدیریت جنبه‌ها و بازنمایی‌های اطلاعاتی را تقویت کرد
عنوان انگلیسی مقاله Adaptive cognitive fit: Artificial intelligence augmented management of information facets and representations
انتشار مقاله سال ۲۰۲۲
تعداد صفحات مقاله انگلیسی ۱۹ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس میباشد
نمایه (index) Scopus – Master Journal List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۲۱٫۳۵۰ در سال ۲۰۲۰
شاخص H_index ۱۳۲ در سال ۲۰۲۲
شاخص SJR ۴٫۵۸۴ در سال ۲۰۲۰
شناسه ISSN ۰۲۶۸-۴۰۱۲
شاخص Quartile (چارک) Q1 در سال ۲۰۲۰
فرضیه دارد
مدل مفهومی دارد
پرسشنامه ندارد
متغیر دارد
رفرنس دارد
رشته های مرتبط مهندسی کامپیوتر – مهندسی فناوری اطلاعات
گرایش های مرتبط هوش مصنوعی – مدیریت سیستم های اطلاعاتی
نوع ارائه مقاله
ژورنال
مجله  مجله بین المللی مدیریت اطلاعات – International Journal of Information Management
دانشگاه William Paterson University, United States
کلمات کلیدی تطبیقی – هوش مصنوعی – تناسب شناختی – ابهام – جنبه اطلاعاتی – پردازش اطلاعات – یادگیری ماشینی – تقویت – عملکرد بهینه – اطلاعات
کلمات کلیدی انگلیسی Adaptive – Artificial intelligence – Cognitive fit – Equivocality – Information facet – Information processing – Machine learning – Augmentation – Optimal performance – Information
شناسه دیجیتال – doi
https://doi.org/10.1016/j.ijinfomgt.2022.102505
کد محصول e16751
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
۱٫ Introduction
۲٫ Big data and cognitive challenges
۳٫ Discussion
۴٫ Conclusion
Funding
Conflict of interest
Acknowledgments
Appendix A. Supplementary material
References

بخشی از متن مقاله:

Abstract

     Explosive growth in big data technologies and artificial intelligence (AI) applications have led to increasing pervasiveness of information facets and a rapidly growing array of information representations. Information facets, such as equivocality and veracity, can dominate and significantly influence human perceptions of information and consequently affect human performance. Extant research in cognitive fit, which preceded the big data and AI era, focused on the effects of aligning information representation and task on performance, without sufficient consideration to information facets and attendant cognitive challenges. Therefore, there is a compelling need to understand the interplay of these dominant information facets with information representations and tasks, and their influence on human performance. We suggest that artificially intelligent technologies that can adapt information representations to overcome cognitive limitations are necessary for these complex information environments. To this end, we propose and test a novel “Adaptive Cognitive Fit” (ACF) framework that explains the influence of information facets and AI-augmented information representations on human performance. We draw on information processing theory and cognitive dissonance theory to advance the ACF framework and a set of propositions. We empirically validate the ACF propositions with an economic experiment that demonstrates the influence of information facets, and a machine learning simulation that establishes the viability of using AI to improve human performance.

Introduction

     We have begun a conversation with machines that will last for the rest of our lives – that will also be remembered by those machines long after our own fragile memories have failed us.’ William Ammerman 2019

     Big data and artificial intelligence are changing the essence and form of our interactions with information and with information processing machines. No longer are human emotions confined to interpersonal relationships – instead, we find ourselves displaying genuine feelings and sentiment when confronted by intelligent agents and systems (Law, Chita-Tegmark, & Scheutz, 2021). Further, we have witnessed significant increases in information entropy due to social media data of questionable veracity and deliberate attempts to provide misinformation (Moravec, Minas, & Dennis, 2018). As a result, decision makers are confronted by information embedded with greater equivocality, veracity, and density. These developments portend fundamental changes in the nature of information that necessitate attention to the ways in which information is received, conceived, interpreted and acted upon. To this end, we conceptualize and develop the Adaptive Cognitive Fit (ACF) framework, to improve our understanding of how humans can and should leverage artificially intelligent technologies to make decisions in the emerging complex information ecosystems.

Conclusion

     The AI schema posited by ACF can be generalized to a wide range of future information systems and decision support design solutions, where AI can learn from human performance, and environmental variables, to help us in our pursuit of optimality. The projected trajectory of developments in the big data and AI ecosystems, and machine learning in particular “have intensified the speed, and our abilities, to create and deploy new knowledge for constructing theories” (Tremblay et al., 2021, Abbasi et al., 2016). ACF is a unique forward-looking theory, which aligns well with calls from researchers towards positivism (Kar & Dwivedi, 2020) such as the “theory in flux” paradigm (Tremblay et al., 2021): ACF is deeply rooted in prominent theoretical frameworks, and posits a clear application-oriented design science framework that combines AI with HI in its pursuit of optimal performance.

     Information systems discipline has an established culture of creatively theorizing and modeling the interactions between human behaviors, technology and information from an applied and design science perspective (Tremblay et al., 2021, and in general: MISQ Special Issue: Next Generation IS Theories, March 2021). Keeping in line with this valuable culture, we hope that ACF will provide vital insights to ensure the relevance and applicability of cognitive fit research to emerging big data and AI ecosystems.

برچسب ها

ثبت دیدگاه