مقاله انگلیسی رایگان در مورد پیش بینی نوسانات بازار سهام پاکستان – الزویر 2022

 

مشخصات مقاله
ترجمه عنوان مقاله پیش بینی نوسانات بازار سهام پاکستان: شواهدی از متغیرهای اقتصادی و شاخص عدم قطعیت
عنوان انگلیسی مقاله Forecasting Pakistan stock market volatility: Evidence from economic variables and the uncertainty index
نشریه الزویر
انتشار مقاله سال 2022
تعداد صفحات مقاله انگلیسی 10 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس میباشد
نمایه (index) Scopus – Master Journal List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
3.201 در سال 2020
شاخص H_index 59 در سال 2022
شاخص SJR 0.748 در سال 2020
شناسه ISSN 1059-0560
شاخص Quartile (چارک) Q2 در سال 2020
فرضیه ندارد
مدل مفهومی دارد
پرسشنامه ندارد
متغیر دارد
رفرنس دارد
رشته های مرتبط اقتصاد
گرایش های مرتبط اقتصاد پولی – اقتصاد مالی
نوع ارائه مقاله
ژورنال
مجله  بررسی بین المللی اقتصاد و امور مالی – International Review of Economics & Finance
دانشگاه School of Economics and Management, Southwest Jiaotong University, China
کلمات کلیدی نوسانات بازار سهام – متغیرهای کلان اقتصادی – عدم قطعیت سیاست اقتصادی – مدل GARCH-MIDAS
کلمات کلیدی انگلیسی Stock market volatility – Macroeconomic variables – Economic policy uncertainty – GARCH-MIDAS model
شناسه دیجیتال – doi
https://doi.org/10.1016/j.iref.2022.04.003
لینک سایت مرجع https://www.sciencedirect.com/science/article/abs/pii/S1059056022001241
کد محصول e17102
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
1 Introduction
2 Literature review
3 Methodology
4 Data
5 In sample estimation results
6 Out of sample estimation
7 Conclusion
Declaration of competing interest
Acknowledgments
References

بخشی از متن مقاله:

Abstract

     This study examines the impact of the economic policy uncertainty index (EPU) and macroeconomic variables on the volatility of the Pakistan stock market using the GARCH-MIDAS (mixed data sampling) model. The model allows us to observe whether those variables contain valuable information to forecast stock market volatility. Our empirical findings show several outcomes. First, our out-of-sample results show economic policy uncertainty index has predictive power to forecast Pakistan stock market volatility. Second, among all variables, oil prices are the most powerful predictor of volatility with a higher out of sample R square value. Third, all macroeconomic variables including exchange rate, short-term interest rate, money supply M2, foreign direct investment, gold prices, inward remittances, industrial production, and consumer price index (proxy for inflation) contain useful information for stock market volatility forecasting. However, the long-run interest rate is an ineffective indicator of volatility during the sample period study. Finally, we find that the combination forecast information is also useful for volatility forecasting.

Introduction

     Volatility in financial markets is an issue of great concern. As a risk measure, volatility considers an important state variable for asset pricing and investment. Additionally, the volatility dynamics are associated with portfolio allocation, risk management, hedging, and options pricing (Christoffersen & Diebold, 2000; Chun et al., 2020; Mei et al., 2017; Morales and Callaghan, 2011; Naeem et al., 2019; Wang and Nishiyama, 2015; Zhang et al., 2020). The higher volatility creates widespread panic and results in disorderly market situations that reduce investors’ confidence and that lead to declines in business investments and economic growth. Therefore, understanding the mechanism of economic dynamics and accurately estimating future volatility is essential.

     However, it is prudently observed by financial analysts, policymakers, and market practitioners. Nonetheless, before estimation, it is hard to find the main economic drivers of volatility. The seminal work of SCHWERT and WILLIAM (1989), who posits a time-varying link between stock market uncertainty and macroeconomic variables. Moreover, Paye (2012) examines the strong linear connection between macroeconomic indicators and stock market volatility. Both theoretical and empirical studies confirm that institutional and macroeconomic determinants are potential drivers of financial markets volatility (Engle et al., 2013; Bahloul et al., 2017; Fang et al., 2018; Hsu et al., 2019). The literature shows that financial market volatility and macroeconomic indicators are intrinsically associated (Chen et al., 1986; Mele, 2007; Christiansen et al., 2012).

Conclusion

     This research examines the forecasting ability of macroeconomic variables and economic policy uncertainty index (EPU) for Pakistan stock market volatility. The macroeconomic variables include exchange rate, long-run interest rate, money supply (M2), short-term interest rate, remittances, consumer prices index (proxy for inflation), foreign direct investment, industrial production, global oil prices, and gold prices. We use the GARCH-MIDAS model for forecasting short-and long-run volatility. In our empirical analysis, we find some notable results. First, we find economic policy uncertainty index information is useful for Pakistan stock market volatility prediction. Second, we find global indicators oil prices are more powerful predictor of Pakistan market volatility. Moreover, all macroeconomic variables are effective indicators of Pakistan stock market volatility except long run interest rate. In addition, the combination information for all macroeconomic variables is also useful for forecasting volatility. These findings are in line with the literature (Asgharian et al., 2013; Liu & Pan, 2020). However, the abovementioned studies are not directly involved in forecasting Pakistan’s stock market volatility. In addition, we did not find consistent findings in a longer period, such as two months and three months. Overall, results indicate that macroeconomic variables are significant predictors of stock market volatility in Pakistan. Therefore, the government and policymakers should consider these factors in policymaking and stock market volatility estimation.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا