مشخصات مقاله | |
ترجمه عنوان مقاله | اندازه گیری شباهت برای مجموعه های فازی فیثاغورث و کاربرد در تصمیم گیری چند معیاره |
عنوان انگلیسی مقاله | Similarity measure for Pythagorean fuzzy sets and application on multiple criteria decision making |
نشریه | تیلور و فرانسیس – Taylor & Francis |
سال انتشار | 2022 |
تعداد صفحات مقاله انگلیسی | 22 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
نوع نگارش مقاله | مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | Master Journal List |
نوع مقاله |
ISI |
فرمت مقاله انگلیسی | |
شناسه ISSN | 0972-0510 |
فرضیه | ندارد |
مدل مفهومی | دارد |
پرسشنامه | ندارد |
متغیر | دارد |
رفرنس | دارد |
رشته های مرتبط | مدیریت – ریاضی |
گرایش های مرتبط | مدیریت پروژه – مدیریت استراتژیک – مدیریت عملکرد – آنالیز عددی |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | مجله آمار و سیستم های مدیریت – Journal of Statistics and Management Systems |
دانشگاه | Department of Mathematics, Islamic Azad University, Iran |
کلمات کلیدی | اندازه گیری شباهت – مقدار فازی فیثاغورث (PFV) – مجموعه های فازی فیثاغورث (PFSs) – تصمیم گیری چند معیاره (MCDM) |
کلمات کلیدی انگلیسی | Similarity measure – Pythagorean fuzzy value (PFV) – Pythagorean fuzzy sets (PFSs) – Multiple criteria decision making (MCDM) |
شناسه دیجیتال – doi | https://doi.org/10.1080/09720510.2021.1891699 |
لینک سایت مرجع |
https://www.tandfonline.com/doi/abs/10.1080/09720510.2021.1891699 |
کد محصول | e17146 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1 Introduction 2 Definitions and some properties 3 Pythagorean fuzzy sets and similarity measure 4 Modified method to MCDM problems with Pythagorean fuzzy sets 5 Application examples 6. Conclusion References |
بخشی از متن مقاله: |
Abstract The similarity measure in this paper is verified for Pythagorean fuzzy sets (PFSs). We point out that a similar measure for two PFSs is a Pythagorean fuzzy value (PFV). To calculate the similarity measure of two PFSs, it is logical that their similarity should be vague. Therefore, we introduce for the first time, as far as we know, the similarity measures for two PVFs is the same as PFV. For calculating PFV of similar measure, we first present the method for calculating Pythagorean similar measure for two PFV by using T-norm and S-norm and then extend it to calculate similar measure for two PFSs. Finally, a numerical example is provided to illustrate the validity and applicability of the presented decision-making method. Introduction In many multi-criteria decision making (MCDM) problems, the decision maker has to use vague (qualitative) values to decide. In the face of qualitative values, for the first time, Bellman and his associates introduced the theory of fuzzy sets (FSs) using mathematical modeling. In making decision with fuzzy sets, the decision maker considers only the degree of correctness of the option and cannot take into account the degree of incorrectness. Continuing this trend, Atanassov in [1] introduced the intuitionistic fuzzy sets (IFSs) theory which is a generalization from FSs which included both the degrees of membership and non-membership. Atanassov and Gargov [2] presented an interval valued IFS (IVIFS) as a generalization and an intuitionist fuzzy sets (IFS) that makes use of interval value instead of a real number. Conclusion We have successfully introduced a new definition for similarity measure for Pythagorean collections, which is also a PFV. We define the similarity measure of the two PFVs with a PFV, using T-norm, and S-norm and we generalized it to PFS. This method is used for decision making with Pythagoras value, using similarity measure. The advantages of this method include: Calculating the similarity size in the form of PFSs takes more information into decision making, and we lose a lot of information, if converted to a real number. |