مشخصات مقاله | |
ترجمه عنوان مقاله | مرور استفاده از هوش مصنوعی در تشخیص زودهنگام و جلوگیری از سرطان دهانی |
عنوان انگلیسی مقاله | Review of the Use of Artificial Intelligence in Early Diagnosis and Prevention of Oral Cancer |
انتشار | مقاله سال 2022 |
تعداد صفحات مقاله انگلیسی | 39 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله مروری (Review Article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | JCR – Master Journal List – Scopus – PubMed Central |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
1.992 در سال 2020 |
شاخص H_index | 13 در سال 2022 |
شاخص SJR | 0.521 در سال 2020 |
شناسه ISSN | 2347-5625 |
شاخص Quartile (چارک) | Q3 در سال 2020 |
فرضیه | ندارد |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی پزشکی – کامپیوتر – بیوتکنولوژی |
گرایش های مرتبط | بیوالکتریک – هوش مصنوعی – زیست فناوری پزشکی |
نوع ارائه مقاله |
ژورنال |
مجله | مجله آسیا و اقیانوسیه پرستاری انکولوژی – Asia-Pacific Journal of Oncology Nursing |
دانشگاه | Southern Medical University, Guangzhou, China |
کلمات کلیدی | سرطان دهانی، هوش مصنوعی، نظارت، تشخیص زودهنگام |
کلمات کلیدی انگلیسی | Oral cancer; Artificial intelligence; Screening; Early diagnosis |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.apjon.2022.100133 |
کد محصول | e17179 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract Introduction Method Results Discussion Conclusion Declaration of conflicting interests Funding Author contributions References |
بخشی از متن مقاله: |
Abstract The global occurrence of oral cancer has increased in recent years. Oral cancer diagnosed in the advanced stages results in morbidity and mortality. The use of technology may be beneficial for early detection and diagnosis, and thus help the clinician with better patient management. The advent of artificial intelligence (AI) has the potential to improve oral cancer screening. AI can precisely analyze an enormous dataset from various imaging modalities and provide assistance in the field of oncology. This review focused on the applications of artificial intelligence in the early diagnosis and prevention of oral cancer. A literature search was conducted in the PubMed and Scopus databases using the search terminology “oral cancer” and “artificial intelligence”. Further information regarding the topic was collected by scrutinizing the reference lists of selected articles. Based on the information obtained, this article reviews and discusses the applications and advantages of AI in oral cancer screening, early diagnosis, disease prediction, treatment planning, and prognosis. Limitations and the future scope of AI in oral cancer research are also highlighted. Introduction The global occurrence of Oral cancer (OC) has increased in recent years, with Oral squamous cell carcinomas (OSCCs) counting for more than 90% of these cancers.[1] OSCCs are also the sixth most common malignancy in the world. In 2012, The World Health Organization reported 529 000 new cases of OC and 300 000 deaths due to OC each year.[2] Oral cancer diagnosed in the advanced stage results in morbidity and mortality. A crucial factor in providing successful treatment is the early detection of cancerous lesions. Inaccessible lesions and the late detection of cancers are associated with low survival, increased symptoms, and a higher treatment cost.[3] Early diagnosis can increase the survival rate to 75–90%.1,4 Early detection includes the diagnosis of oral potentially malignant disorders and regular follow-ups. Oral potentially malignant disorders (OPMDs) have been defined as “any oral mucosal abnormality that is associated with a statistically increased risk of developing oral cancer.”[5] OPMDs include oral leukoplakia, proliferative verrucous leukoplakia, erythroplakia, oral lichen planus, oral submucous fibrosis, palatal lesions in reverse smokers, oral lupus erythematosus, actinic keratosis, and dyskeratosis congenita. Newly included lesions in the recent classification are oral lichenoid lesion and oral chronic graft-versus-host disease.[5] Conclusion In recent years, the use of AI for the diagnosis and prognosis of diseases has evolved. Previous studies have proved that ML produces accurate results for OC detection. It assists clinicians in diagnostic processes and minimizes inadvertent errors. However, previous studies based on deep learning (neural network) provided more accuracy with the early detection of OC as compared to machine learning. AI presents the opportunity to develop new techniques combined with traditional approaches to improve the accuracy of detection of OC and OPMDs, as well as to predict the course of the precancerous/cancerous lesions from retrospective data. Future research could consider the innovation of data fusion algorithms combining various modalities, such as clinical, radiological, histological, and molecular assessments, to support the early diagnosis and outcome estimation of the disease. |