مشخصات مقاله | |
ترجمه عنوان مقاله | تجزیه و تحلیل داده های بزرگ: کاربرد در صنعت بانکداری |
عنوان انگلیسی مقاله | Big data analytics: Application in the banking industry |
نشریه | امرالد – emerald insight |
سال انتشار | ۲۰۲۳ |
تعداد صفحات مقاله انگلیسی | ۳ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
۰٫۱۴۴ در سال ۲۰۲۲ |
شاخص H_index | ۱۷ در سال ۲۰۲۳ |
شاخص SJR | ۰٫۱۱۷ در سال ۲۰۲۲ |
شناسه ISSN | ۰۲۵۸-۰۵۴۳ |
شاخص Quartile (چارک) | Q4 در سال ۲۰۲۲ |
فرضیه |
ندارد |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مدیریت |
گرایش های مرتبط | بانکداری – سیستم های اطلاعاتی پیشرفته |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | جهت راهبردی – STRATEGIC DIRECTION |
کلمات کلیدی | کلان داده – صنعت بانکداری – تجزیه و تحلیل داده های بزرگ |
کلمات کلیدی انگلیسی | Big data – Banking industry – Big data analytics |
شناسه دیجیتال – doi |
https://doi.org/10.1108/SD-01-2023-0006 |
لینک سایت مرجع |
https://www.emerald.com/insight/content/doi/10.1108/SD-01-2023-0006/full/html |
کد محصول | e17486 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract Challenges with big data analytics Customer clustering analysis Product affinity prediction model Impact of big data analytics in bank A Comment Reference |
بخشی از متن مقاله: |
Abstract Purpose Design/methodology/approach Findings Originality/value
Challenges with big data analytics Despite its potential, the adoption of big data analytics is hindered by numerous challenges. Financial consideration and human resources are the two main factors obstructing its implementation. Studies suggest many banks are yet to realize the full benefits and returns of leveraging big data. Most organizations also lack adequate managerial and technical skills to gain value from big data usage. Indeed, many banks unfamiliar with this new practice lack the capabilities to embed big data analytics into their operations and processes. A difficulty firms face is reducing a large and diverse dataset derived from several sources into easy-to-interpret results that can support decisionmaking. It becomes critical for firms to employ experienced data scientists who can uncover insights that can help improve the bank’s operation and performance. Banks also face many non-technical challenges in big data applications. Organizations need the buy-in from organizational members from all ranks-from senior management to lower levels across various functions. The adoption of new technologies necessitates changes in operating practices which may result in organizational resistance. Security, privacy and government regulations can also impact big data applications.
Impact of big data analytics in bank A Using insights from customer clustering and product affinity models, Bank A was able to adapt its offerings across channels. For example, the organization used cluster affinity scores to target specific marketing campaigns for those customers. Bank A implemented these changes in three waves across ten months. The results showed that the different divisions (e.g. wealth management and personal finance) improved their response rates using the two data analytics methods. |