مقاله انگلیسی رایگان در مورد مدل یادگیری ماشین برای نظارت بر افسردگی – هینداوی 2023

 

مشخصات مقاله
ترجمه عنوان مقاله
مدل یادگیری ماشین برای نظارت بر افسردگی به کمک کامپیوتر در میان جوانان با استفاده از هدست های بی سیم EEG
عنوان انگلیسی مقاله Machine Learning Model for Computer-Aided Depression Screening among Young Adults Using Wireless EEG Headset
نشریه هینداوی
سال انتشار 2023
تعداد صفحات مقاله انگلیسی  23 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
نوع نگارش مقاله
مقاله پژوهشی (Research article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – JCR – MedLine
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
3.410 در سال 2022
شاخص H_index 70 در سال 2023
شاخص SJR 0.863 در سال 2022
شناسه ISSN 1687-5273
فرضیه ندارد
مدل مفهومی  ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط کامپیوتر – مهندسی پزشکی – روانشناسی
گرایش های مرتبط هوش مصنوعی – رایانش – بیوالکتریک
نوع ارائه مقاله
ژورنال
مجله / کنفرانس Computational Intelligence and Neuroscience – هوش رایانشی و علوم اعصاب
دانشگاه Independent University Bangladesh, Bangladesh
شناسه دیجیتال – doi
https://doi.org/10.1155/2023/1701429
لینک سایت مرجع
https://www.hindawi.com/journals/cin/2023/1701429/
کد محصول e17550
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
Introduction
Materials
Results and Discussion
Conclusion
Data Availability
Conflicts of Interest
Acknowledgments
References

 

بخشی از متن مقاله:

Abstract

Depression is a disorder that if not treated can hamper the quality of life. EEG has shown great promise in detecting depressed individuals from depression control individuals. It overcomes the limitations of traditional questionnaire-based methods. In this study, a machine learning-based method for detecting depression among young adults using EEG data recorded by the wireless headset is proposed. For this reason, EEG data has been recorded using an Emotiv Epoc+ headset. A total of 32 young adults participated and the PHQ9 screening tool was used to identify depressed participants. Features such as skewness, kurtosis, variance, Hjorth parameters, Shannon entropy, and Log energy entropy from 1 to 5 sec data filtered at different band frequencies were applied to KNN and SVM classifiers with different kernels. At AB band (8–30 Hz) frequency, 98.43 ± 0.15% accuracy was achieved by extracting Hjorth parameters, Shannon entropy, and Log energy entropy from 5 sec samples with a 5-fold CV using a KNN classifier. And with the same features and classifier overall accuracy = 98.10 ± 0.11, NPV = 0.977, precision = 0.984, sensitivity = 0.984, specificity = 0.976, and F1 score = 0.984 was achieved after splitting the data to 70/30 ratio for training and testing with 5-fold CV. From the findings, it can be concluded that EEG data from an Emotiv headset can be used to detect depression with the proposed method.

Introduction

Depressive disorder is a highly prevalent mental illness. Sadness, loss of interest or enjoyment, feelings of guilt or low self-worth, interrupted sleep or food, fatigue, and difficulty concentrating are some characteristics of depression. It may affect a person’s capacity to operate in daily life or at work or school. According to the World Health Organization (WHO) back in 2015, almost 4.4% of the world’s population was suffering from depression [1]. Because of the COVID-19 pandemic, many people suffered from depression due to job loss, study hampering, losing close relatives, staying indoors, etc. A study showed 19.3% increase in depression symptoms among people after COVID-19 in the United States [2]. A study has shown the changes in obsession, depression, and quality of life in schizophrenia patients before and after COVID-19 [3]. When depression is severe it can lead to suicide. Every year around 800 thousand people die because of suicide [1]. In 2017, 13.2% of young adults (aged 18–25) in the U.S. suffered from depression which was 5.1% less in the year 2009 [4]. Of the deaths of young people, around 9.1% are due to suicide [5]. In most suicide cases, people had psychiatric disorders where depression is the most common disorder among others [6]. According to a recent study, insecure attachment styles are linked to greater problems such as depression, social anxiety, and suicidal thoughts [7]. So, depression is a major issue that should be diagnosed and treated at an early age to prevent suicide and for the betterment of the quality of life.

Conclusion

In this work, we have recorded EEG data of young adults (19 depressed and 13 Control) evaluated by the PHQ9 screening tool and proposed a machine learning approach to learn about the EEG properties for depression detection.

We conducted multiple experiments with the reported machine learning (SVM and KNN) classifiers with our recorded data. The first experiment we conducted was on segmentation to find the better sample length suitable for ML. From our experiments, we have identified that 5-second segments are suitable for our work. Then, we have identified a suitable frequency range from various experiments that improve performance using features that are related to depression detection. We have found out that Hjorth parameters along with Shannon entropy and long energy entropy provide better results among other reported features and the beta band (12–30 Hz) gives the highest accuracy of 97.21 ± 0.21% with 25 iterations and 5-fold CV using weighted KNN compared to the other sub-bands. By combining the sub-bands, we have also investigated some other frequency ranges. We have found out that by taking the range from alpha to beta 8–30 Hz (AB), we can improve ML performance and achieve 98.43 ± 0.15% accuracy with 25 iterations and a 5-fold CV with fine KNN classifier. Using AB (8–30 Hz), we can see a significant improvement of 1.22% accuracy and slandered deviation. To further investigate the reliability, we divided the dataset 70/30 for training and testing with 5-fold CV and 10 iterations. In this experiment, we have found out that the ML performance is better by choosing the AB (8–30 Hz) band with fine KNN classifier with an accuracy of 98.10 ± 0.11%, precision of 0.984 ± 0.003, NPV of 0.977 ± 0.002, sensitivity of 0.984 ± 0.002, specificity of 0.976 ± 0.005, and F1 score of 0.984 ± 0.001. Then, we analyzed the ML performance in different regions of the brain and concluded that using the whole brain for depression detection will give the highest accuracy. The proposed method can detect depression among young adults with minimum requirements compared to other related works.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا