مقاله انگلیسی رایگان در مورد تکنیک مدیریت بهینه انرژی با استفاده از روش محدودیت – IEEE 2019

مقاله انگلیسی رایگان در مورد تکنیک مدیریت بهینه انرژی با استفاده از روش محدودیت – IEEE 2019

 

مشخصات مقاله
ترجمه عنوان مقاله تکنیک مدیریت بهینه انرژی با استفاده از روش محدودیت E برای میکروگریدهای مبتنی بر باتری مستقل و مرتبط با شبکه
عنوان انگلیسی مقاله An Optimal Energy Management Technique Using the E-Constraint Method for Grid-Tied and Stand-Alone Battery-Based Microgrids
انتشار مقاله سال ۲۰۱۹
تعداد صفحات مقاله انگلیسی ۱۵ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه IEEE
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۴٫۶۴۱ در سال ۲۰۱۸
شاخص H_index ۵۶ در سال ۲۰۱۹
شاخص SJR ۰٫۶۰۹ در سال ۲۰۱۸
شناسه ISSN ۲۱۶۹-۳۵۳۶
شاخص Quartile (چارک) Q2 در سال ۲۰۱۸
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط مهندسی برق، مهندسی انرژی
نوع ارائه مقاله
ژورنال
مجله / کنفرانس دسترسی – IEEE Access
دانشگاه  Sao Carlos School of Engineering, University of S ˜ ao Paulo, S ˜ ao Carlos 13566-590, Brazil
کلمات کلیدی افت توان باتری، تولید توزیع شده، سیستم مدیریت انرژی، میکروگرید، جریان انرژی بهینه، دستگاه ذخیره سازی
کلمات کلیدی انگلیسی  Battery power gradient, distributed generation, energy management system, microgrid, optimal power flow, storage device
شناسه دیجیتال – doi
https://doi.org/10.1109/ACCESS.2019.2954050
کد محصول  E14025
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
I. Introduction
II. System Description
III. Proposed Energy Management System
IV. Optimization Problem Formulation
V. Evaluation Scenarios
Authors
Figures
References

 

بخشی از متن مقاله:
Abstract

The intermittent characteristics of microgrids (MGs) have motivated the development of energy management systems (EMSs) in order to optimize the use of distributed energy resources. In current studies, the implementation of an EMS followed by experimental-based analyses for both grid-tied and stand-alone MG operation modes is often neglected. Additionally, the design of a management strategy that is capable of preserving the storage device lifetime in battery-based MGs using a power gradient approach is hardly seen in the literature. In this context, this work presents the application of an EMS for battery-based MGs which is suitable for both grid-tied and stand-alone operation modes. The proposed EMS is formulated as an optimal power flow (OPF) problem using the -constraint method which is responsible for computing the current references used by the EMS to control the MG sources. In the optimization problem, the total generation cost is minimized such that the active power losses are kept within pre-established boundaries, and a battery management strategy based on power gradient limitation is included. Finally, the effectiveness of the proposed EMS is evaluated by two scenarios which enable detailed analyses and validation. The first considers a dispatchable and a non-dispatchable source, whereas the second a dispatchable source and a storage device. The experimental results showed that the proposed EMS is efficient in both operation modes and is also capable of smoothing the state of charge (SoC) behavior of the storage device.

Introduction

The connection of distributed generators (DGs) to electrical power systems and the renewable energy sources intermittent characteristics have motivated the study of energy management strategies to optimize microgrids (MGs) operations, therefore improving DGs performance in an intelligent, safe, reliable and coordinated way [1]. The control concepts applied to MGs are established hierarchically through the primary, secondary and tertiary levels. The energy management is executed at the tertiary level by solving an optimal power flow (OPF) problem which optimizes the energy resources usage [2]. This is performed based on an objective function differentiation. Typically, the OPF considers power balance constraints, emission of pollutants, fuel cost, performance, security boundaries, power sharing and stability [1], [3]–[۹]. Basically, an energy management system (EMS) is addressed following either a decentralized or a centralized architecture. In the former, the management strategy runs locally with slow communication links. In the latter, on the other hand, it operates on the highest control layer and fast communication links are required [10]. The advantage of the centralized approach is that the EMS configuration provides broad observability of the MGs, which promotes optimal overall operation in terms of voltage and current (amplitude and phase) minimal requirements to run an optimization algorithm which computes each operating point that will be sent to the DGs.

ثبت دیدگاه