مشخصات مقاله | |
ترجمه عنوان مقاله | یک چارچوب بهینه سازی مبتنی بر شبیه سازی ترکیبی پشتیبانی از توسعه تعمیر و نگهداری استراتژیک برای بهبود عملکرد تولید |
عنوان انگلیسی مقاله | A hybrid simulation-based optimization framework supporting strategic maintenance development to improve production performance |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 13 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.712 در سال 2019 |
شاخص H_index | 226 در سال 2020 |
شاخص SJR | 2.205 در سال 2019 |
شناسه ISSN | 0377-2217 |
شاخص Quartile (چارک) | Q1 در سال 2019 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | دارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی صنایع |
گرایش های مرتبط | تولید صنعتی، بهینه سازی سیستم ها |
نوع ارائه مقاله |
ژورنال |
مجله | مجله اروپایی تحقیقات عملیاتی – European Journal of Operational Research |
دانشگاه | School of Engineering Science, University of Skövde, Skövde SE-541 28, Sweden |
کلمات کلیدی | ساختار مشکل، پشتیبانی از تصمیم، پویایی سیستم، بهینه سازی چند منظوره، شبیه سازی رویداد گسسته |
کلمات کلیدی انگلیسی | Problem structuring، Decision support، System dynamics، Multi-objective optimization، Discrete-event simulation |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.ejor.2019.08.036 |
کد محصول | E14533 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction 2. Background 3. Combining SD and DES for maintenance development 4. Description of the HSBOF 5. Discussion and conclusions Acknowledgements References |
بخشی از متن مقاله: |
Abstract
Managing maintenance and its impact on business results is increasingly complex, calling for more advanced operational research methodologies to address the challenge of sustainable decision-making. This problem-based research has identified a framework of methods to supplement the operations research/management science literature by contributing a hybrid simulation-based optimization framework (HSBOF), extending previously reported research. Overall, it is the application of multi-objective optimization (MOO) with system dynamics (SD) and discrete-event simulation (DES) respectively which allows maintenance activities to be pinpointed in the production system based on analyzes generating less reactive work load on the maintenance organization. Therefore, the application of the HSBOF informs practice by a multiphase process, where each phase builds knowledge, starting with exploring feedback behaviors to why certain near-optimal maintenance behaviors arise, forming the basis of potential performance improvements, subsequently optimized using DES+MOO in a standard software, prioritizing the sequence of improvements in the production system for maintenance to implement. Studying literature on related hybridizations using optimization the proposed work can be considered novel, being based on SD+MOO industrial cases and their application to a DES+MOO software. Introduction Maintenance considerably increases the budget in manufacturing industries. Even though a cost focus belongs to the past and maintenance has shifted towards being an organizational strategic capacity (Simões, Gomes & Yasin, 2011), the tradeoff between invested costs and their benefits is still of great concern for decision makers. A cost focus leads to reactive maintenance, which according to Geary, Disney and Towill (2006), potentially leads to increased disruption in real-world supply chains, causing excess variance in performance. Recent developments in terms of increased automation, more expensive equipment, and more complex production systems have required larger capital tied up in assets (Garg & Deshmukh, 2006), and proactive maintenance policies are therefore considered a necessity (Pinjala, Pintelon & Vereecke, 2006). Nonetheless, identifying appropriate practices and implementing sound strategies for developing maintenance performance are still non-trivial. A clear measure of this is the frequently-emphasized gap between theory and practice in the maintenance optimization literature (e.g. Fraser, Hvolby and Tseng (2015), Linnéusson, Ng and Aslam (2018a). One aspect of this gap is that little attention has been paid to making model results understandable to practitioners (Dekker, 1996, p.235). Moreover, Woodhouse (2001) identifies the organizational capabilities to manage the implementation of sustainable maintenance practices a crucial limiting factor. According to Baldwin and Clark (1992), capabilities such as identifiable combinations of skills, procedures, physical assets, and information systems are sources of superior performance. |