مشخصات مقاله | |
ترجمه عنوان مقاله | هشدار اولیه خطر و کنترل ایمنی مواد غذایی بر اساس یکپارچه سازی فرآیند تحلیل سلسله مراتبی بهبود یافته با روش تجزیه و تحلیل کنترل کیفیت |
عنوان انگلیسی مقاله | Risk early warning and control of food safety based on an improved analytic hierarchy process integrating quality control analysis method |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 10 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.418 در سال 2019 |
شاخص H_index | 103 در سال 2020 |
شاخص SJR | 1.450 در سال 2019 |
شناسه ISSN | 0956-7135 |
شاخص Quartile (چارک) | Q1 در سال 2019 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | صنایع غذایی |
گرایش های مرتبط | کنترل کیفی و بهداشت |
نوع ارائه مقاله |
ژورنال |
مجله | کنترل مواد غذایی – Food Control |
دانشگاه | Key Laboratory of Ministry of Education for Engine Health Monitoring and Networking, Beijing University of Chemical Technology, Beijing, 100029, China |
کلمات کلیدی | ایمنی مواد غذایی، هشدار اولیه خطر، ماتریس خطر، آنالیز کنترل کیفیت، فرایند تحلیل سلسله مراتبی، وزن آنتروپی |
کلمات کلیدی انگلیسی | Food safety، Risk early warning، Risk matrix، Quality control analysis، Analytic hierarchy process، Entropy weight |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.foodcont.2019.106824 |
کد محصول | E14485 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1- Introduction 2- The risk early warning method 3- Case study 4- Discussion 5- Conclusion References |
بخشی از متن مقاله: |
Abstract Food safety risks has received great attention in all world. And the reasonable effectiveness of security warnings can reduce public panic and risk losses. Therefore, this paper proposes an improved risk early warning method for food safety detection data based on the analytic hierarchy process (AHP) integrating the quality control analysis method. The AHP based on the entropy weight can obtain risk values for food safety component data. And the risk matrix of the risk component is obtained by the risk probabilities of the components. Then the corresponding risk levels are calculated using the quality control analysis method to release the risk warning information. Finally, a case study of dairy product safety data from the GuiZhou province in China is conducted to verify the feasibility and reliability of the proposed method. Moreover, the proposed method can scientifically and reasonably determine the risk level information. Furthermore, the risk management is provided to effectively reduce risk losses of the country though relevant quality inspection departments. Introduction With the rapid development of the economy, the food safety and quality have raised a higher requirement. If making correct and timely warning of food safety, people’s fears will be alleviated, and the harm caused by the food security crisis will be reduced. Nowadays, there are more panic and unintended consequences bring by false warnings. And the food safety risk is serious. Meanwhile, more and more food safety problems involving complex food safety data are occurred (Ma, Hou, Liu, & Xue, 2016). Because the food safety risk monitoring foundation of China is weak, it is very important to customize a risk monitoring model based on the basic national conditions (Tang, 2013). Due to the superior processing characteristics of complex food safety data technology, many dig data analysis and artificial intelligence methods of food safety risk assessment and early warning were proposed (Liu, Li, Yang, & Guo, 2018a; Wang, Yang, Luo, He, & Tan, 2015). Samuel et al. (Samuel, Asogbon, Sangaiah, Fang, & Li, 2017) used the fuzzy analysis hierarchical process (AHP) technique to calculate the global weight of attributes based on their individual contributions and predicted the high frequency risk of patients by training the artificial neural network (ANN) classifier. Wang et al. (Wang & Yue, 2017) formulated an early warning strategy for the safety risks arising from food transportation in the real-time monitoring of food safety to reduce the risk of food supply chain. |