مقاله انگلیسی رایگان در مورد الگوریتم طبقه بندی تصویر رادار روزنه مصنوعی – IEEE 2019
مشخصات مقاله | |
ترجمه عنوان مقاله | الگوریتم طبقه بندی تصویر رادار روزنه مصنوعی (SAR) بر اساس پارامترهای قطبیت سنجی چند صفتی با استفاده از الگوریتم بهینه سازی مگس میوه (FOA) و ماشین بردار پشتیبانی حداقل مربعات (LS-SVM) |
عنوان انگلیسی مقاله | A SAR Image Classification Algorithm Based on Multi-Feature Polarimetric Parameters Using FOA and LS-SVM |
انتشار | مقاله سال ۲۰۱۹ |
تعداد صفحات مقاله انگلیسی | ۱۸ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه IEEE |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
۴٫۶۴۱ در سال ۲۰۱۸ |
شاخص H_index | ۵۶ در سال ۲۰۱۹ |
شاخص SJR | ۰٫۶۰۹ در سال ۲۰۱۸ |
شناسه ISSN | ۲۱۶۹-۳۵۳۶ |
شاخص Quartile (چارک) | Q2 در سال ۲۰۱۸ |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر |
گرایش های مرتبط | مهندسی الگوریتم و محاسبات |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | دسترسی – IEEE Access |
دانشگاه | School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
کلمات کلیدی | تصویر رادار روزنه مصنوعی (SAR) قطبیت سنج، طبقه بندی، چند صفتی، الگوریتم بهینه سازی مگس میوه (FOA) |
کلمات کلیدی انگلیسی | Polarimetric SAR image, classification, multi-feature, FOA |
شناسه دیجیتال – doi |
https://doi.org/10.1109/ACCESS.2019.2957547 |
کد محصول | E14084 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
ABSTRACT
I. INTRODUCTION II. METHODOLOGY III. EXPERIMENTAL RESULTS AND DISCUSS IV. CONCLUSION REFERENCES |
بخشی از متن مقاله: |
ABSTRACT
This paper presents a Synthetic Aperture Radar (SAR) image classification algorithm based on multi-feature using Fruit Fly Optimization Algorithm (FOA) and Least Square Support Vector Machine (LS-SVM). First, pixel-based information derived from three elements of coherency matrix, six parameters obtained by H/α/A decomposition and Freeman decomposition techniques, and three polarimetric parameters including the total receive power (SPAN), pedestal height, and Radar Vegetation Index (RVI), as well as region-based information derived from eight texture parameters obtained by Grey Level Co-occurrence Matrix (GLCM) are combined to use as the features of land cover. Second, Kernel Principal Component Analysis (KPCA) is used to reduce the dimensionality of the multi-feature data derived from the integration of the pixel-based and region-based information. Third, LS-SVM is used as the classifier in this study due to its fast solving speed and desirable classification capability. Since the input parameters of LS-SVM significantly affect the classification performance, we employ FOA to obtain the optimized input parameters. Finally, the experiments on two fully polarimetric SAR images of various crops with a limited number of samples are implemented by the proposed method and other commonly used methods, respectively. The results show that the proposed method can attain better classification performances compared with other methods. INTRODUCTION Land cover information is important for land development and management. Land cover classification is also the first step in remote sensing of vital global parameters such as soil moisture. Remotely sensing data obtained from various sensors provides an economical way to characterize land cover information. Optical remote sensing is an effective approach but by itself is limited by weather conditions. Synthetic Aperture Radar (SAR), which can obtain information under different weather conditions, is therefore used for acquiring land cover information in various regions. Significant research aiming at land cover classification has been reported by many researchers. In the early years, most studies were developed based on single-polarization data [1], [2]. Since single-polarization data does not contain all the polarization information of ground objects, such methods were most likely to create confusion among similar ground objects and thereby were only suited for coarse classification [3]–[۵]. With the rapid development of the SAR techniques, many methods utilizing multi-polarization or full-polarization data were explored for attaining a better classification [6]–[۸]. The critical procedure for these methods is polarimetric decomposition, which provides a way to obtain the physical features of natural media. Many polarimetric decomposition methods have been explored by many researchers [9]–[۱۴]. |