مشخصات مقاله | |
عنوان مقاله | Understanding the textual content of online customer reviews in B2C websites: A cross-cultural comparison between the U.S. and China |
ترجمه عنوان مقاله | درک محتوای متنی بررسی آنلاین مشتریان در وب سایت های B2C: مقایسه بین فرهنگی بین ایالات متحده و چین |
فرمت مقاله | |
نوع مقاله | ISI |
سال انتشار | |
تعداد صفحات مقاله | 35 صفحه |
رشته های مرتبط | مدیریت |
گرایش های مرتبط | تجارت الکترونیک |
مجله | کامپیوترها در رفتار انسان – Computers in Human Behavior |
دانشگاه | School of Management, Huazhong University of Science & Technology, PR China |
کلمات کلیدی | بررسی آنلاین مشتری، محتوای متنی فرهنگی متقابل، تجزیه و تحلیل محتوا |
کد محصول | E5187 |
تعداد کلمات | 7708 کلمه |
نشریه | نشریه الزویر |
لینک مقاله در سایت مرجع | لینک این مقاله در سایت الزویر (ساینس دایرکت) Sciencedirect – Elsevier |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
بخشی از متن مقاله: |
1. Introduction
Online shopping flourished and became increasingly popular in recent years (Bagdoniene and Zemblyte, 2015; Clemes, 2014). Most B2C websites support and encourage post-purchase consumers to write reviews on their sites. Online customer reviews (OCRs) reflect the shopping and product usage experiences of consumers. OCRs provide sellers with genuine, convenient, and low-cost firsthand market information and potential customers with vital decision-making information. Customers read the textual content of OCRs rather than rely only on summarized statistics (Chevalier and Mayzlin, 2006). OCRs are important information sources for sellers to attract new customers and manage regular clients (Chevalier and Mayzlin, 2006; Hu et al., 2008; Sparks and Browning, 2010). The textual content of OCRs is key to understand the effect of these reviews (Godes et al. 2005; Moore, 2012; Shin and Biocca, 2017). Hence, the textual content of OCRs should be urgently examined. However, previous studies mainly focus on the statistical characteristics of the content of OCRs, such as review valence, quantity, extremity, depth, diversity, density, and length (Cao et al., 2011; Chevalier and Mayzlin, 2006; Hu et al., 2008; Korfiatis et al., 2012; Mudambi and Schuff, 2010; Qazi et al., 2016; Willemsen et al., 2011). Previous works overlooked the narrative content of OCRs (Moore, 2012). According to Hong and Park (2012), narrative OCRs have important effect on consumer attitude toward product as well as statistical OCRs. In practice, consumers rely on both statistical and narrative OCRs when evaluating a product. Sellers rely on narrative OCRs to form comprehensive understanding of consumer experience. Thus, the textual content of OCRs should be explored. In order to understanding the textual content of OCRs more systematically, one aim of the present study is to propose the dimensions of the textual content of OCRs, which has contribution to construct analysis framework of the textual content of OCRs. |