مشخصات مقاله | |
ترجمه عنوان مقاله | مروری بر محاسبه مرجع جریان مبدل های PV متصل به شبکه سه فاز در شرایط بروز خرابی های شبکه |
عنوان انگلیسی مقاله | A review on current reference calculation of three-phase grid-connected PV converters under grid faults |
انتشار | مقاله سال 2017 |
تعداد صفحات مقاله انگلیسی | 7 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه IEEE |
نوع نگارش مقاله |
مقاله مروری (Review article) |
مقاله بیس | این مقاله بیس نمیباشد |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
رشته های مرتبط | مهندسی برق |
گرایش های مرتبط | انتقال و توزیع – الکترونیک – سیستم های قدرت – الکترونیک قدرت – ماشینهای الکتریکی |
نوع ارائه مقاله |
کنفرانس |
مجله / کنفرانس | IEEE Power and Energy Conference at Illinois |
دانشگاه | Department of Electrical and Computer Engineering Northeastern University Boston, MA |
کلمات کلیدی | نوسان توان، محدودیت جریان، نوسان ولتاژ لینک DC- ، گذار از ولتاژ پایین (LVRT)، سیستم های فوتوولتاییک (PV)، اینورتر (معکوس کننده) PV دو طبقه ای |
کلمات کلیدی انگلیسی | ower oscillation, Current limitation, Dc-link voltage oscillation, Low-Voltage Ride-Through (LVRT), Photovoltaic (PV) systems, Two-stage PV inverter |
شناسه دیجیتال – doi |
https://doi.org/10.1109/PECI.2017.7935761 |
کد محصول | E11819 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract I.Introduction II.Problem Formulation III.Control Scheme IV.Benchmarking (Simulation Results) V.Conclusion |
بخشی از متن مقاله: |
Introduction Power electronics is a key for the integration of renewable energy systems [1-9]. With an increasing adoption of gridconnected Photovoltaic (PV) systems, a strong emphasis is placed on their dynamic behaviors and impacts on the public grid [10-17]. Accordingly, most countries have revised their grid codes to utilize this huge capacity to improve the grid stability during grid faults [18, 19]. These new requirements enforce distributed generation systems to remain connected to the grid and inject reactive power to the grid under fault incidents [20-24]. Up to now, a vast array of technical literature has been presented on the performance of wind turbines under grid faults [25, 26]. These issues are now gaining more considerations in PV systems [27-32], as the power capacity of an individual PV system is also increasing. Detection of voltage sags, current limitation, current reference calculation, active and reactive power oscillation, and dc-link voltage oscillation are among the important issues. In addition, they are the key issues to a proper operation of grid-connected PV converters under faults [33]. Among them, the Current Reference Calculation (CRC) plays the most impressive role to satisfy the grid requirements, especially under unbalanced grid faults. Different CRC methods can be found in the literature. In [34], the Instantaneous Active Reactive Control (IARC) has been proposed. The IARC controls three-phase voltages and does not use the Positive Sequence (PS) and Negative Sequence (NS) voltages. Despite of good performance under balanced faults, in case of unbalanced voltage sags, the IARC control strategy leads to non-sinusoidal output currents with a high Total Harmonic Distortion (THD). In [27], the Average ActiveReactive Control (AARC) has then been proposed to mitigate high order harmonics from the IARC method. However, if both active and reactive current are injected, active power suffers from oscillations of twice the fundamental frequency. Hence, the Positive and Negative Sequence Compensation (PNSC) has been introduced to inject sinusoidal PS and NS currents to the grid [34]. However, in case of injecting both active and reactive power, double the grid fundamental frequency oscillations during unbalanced grid faults will appear. Furthermore, the Balanced Positive Sequence Control (BPSC) method is presented in [35] to inject a set of balanced and sinusoidal currents with PS components. Unfortunately, the active and reactive power also have oscillatory components. In [36], a control scheme has been presented which injects both PS and NS proportional to a certain adjustable parameter according to the grid fault severity. As observed from the above, the priorart control methods suffer from either active power and dc-link voltage oscillations or injection of non-sinusoidal currents into the grid under unbalanced grid faults. |