مقاله انگلیسی رایگان در مورد نقشه کشی ریسک سیل قرن ۲۱ – الزویر ۲۰۲۰
مشخصات مقاله | |
ترجمه عنوان مقاله | نقشه کشی ریسک سیل قرن ۲۱ در مکان های منتخب خدمات پارک ملی ایالات متحده |
عنوان انگلیسی مقاله | ۲۱st Century flood risk projections at select sites for the U.S. National Park Service |
انتشار | مقاله سال ۲۰۲۰ |
تعداد صفحات مقاله انگلیسی | ۱۱ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – DOAJ |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
۳٫۴۳۸ در سال ۲۰۱۹ |
شاخص H_index | ۱۸ در سال ۲۰۲۰ |
شاخص SJR | ۱٫۰۶۷ در سال ۲۰۱۹ |
شناسه ISSN | ۲۲۱۲-۰۹۶۳ |
شاخص Quartile (چارک) | Q1 در سال ۲۰۱۹ |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | دارد |
رفرنس | دارد |
رشته های مرتبط | جغرافیا |
گرایش های مرتبط | مخاطرات آب و هوایی، مخاطرات محیطی |
نوع ارائه مقاله |
ژورنال |
مجله | مدیریت ریسک آب و هوایی – Climate Risk Management |
دانشگاه | University of Colorado, Boulder, CO, United States |
کلمات کلیدی | ریسک سیل |
کلمات کلیدی انگلیسی | Flood risk |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.crm.2020.100211 |
کد محصول | E14599 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
۱٫ Introduction ۲٫ Methods ۳٫ Study sites and data ۴٫ Results ۵٫ Discussion and conclusion Acknowledgements Appendix A. Supplementary data References |
بخشی از متن مقاله: |
Abstract Assessing flood risk using stationary flood frequency analysis techniques is commonplace. However, it is increasingly evident that the stationarity assumption of these analyses does not hold as anthropogenic climate change could shift a site’s hydroclimate beyond the range of historical behaviors. We employ nonstationary flood frequency models using the generalized extreme value (GEV) distribution to model changing flood risk for select seasons at twelve National Parks across the U.S. In this GEV model, the location and/or scale parameters of the distribution are allowed to change as a function of time-variable covariates. We use historical precipitation and modeled flows from the Variable Infiltration Capacity model (VIC), a landsurface model that simulates land–atmosphere fluxes using water and energy balance equations, as covariates to fit a best nonstationary GEV model to each site. We apply climate model projections of precipitation and VIC flows to these models to obtain future flood probability estimates. Our model results project a decrease in flood risk for sites in the southwestern U.S. region and an increase in flood risk for sites in northern and eastern regions of the U.S. for the selected seasons. The methods and results presented will enable the NPS to develop strategies to ensure public safety and efficient infrastructure management and planning in a nonstationary climate. Introduction Anthropogenic climate change has increased global mean annual land-surface air temperatures and evidence supports a change in the behavior of precipitation (Hartmann et al., 2013) and streamflow extremes (Hirsch and Ryberg, 2012; Mallakpour and Villarini, 2015; Ahn and Palmer, 2016). Given the non-stationary nature of our climate system at present, the common assumption in traditional flood frequency analysis techniques that flood risk will remain stationary into the future must be questioned – climate change is anticipated to continue to shift hydroclimate beyond the range of historical behaviors (Milly et al., 2008). As temperatures rise, we expect an increase in total precipitable water in the atmosphere (Trenberth et al., 2003), which was already observed over much of North America (Ross and Elliott, 1996). Consequently, Hartmann et al. (2013) suggest a likely observed increase in either the frequency or intensity of heavy precipitation events across North America, particularly in central North America. Studies using extreme value theory and precipitation-temperature scaling also generally support this claim (DeGaetano, 2009; Wasko and Sharma, 2017). |