مشخصات مقاله | |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 9 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
منتشر شده در | نشریه الزویر |
نوع مقاله | ISI |
عنوان انگلیسی مقاله | Visual Cryptography Based Multilevel Protection Scheme for Visualization of Network Security Situation |
ترجمه عنوان مقاله | طرح حفاظت چند منظوره مبتنی بر رمزنگاری تصویری برای تجسم وضعیت امنیت شبکه |
فرمت مقاله انگلیسی | |
رشته های مرتبط | مهندسی کامپیوتر، فناوری اطلاعات و ارتباطات، مهندسی برق |
گرایش های مرتبط | امنیت اطلاعات، دیتا و امنیت شبکه |
مجله | علوم کامپیوتر پروسیدیا – Procedia Computer Science |
دانشگاه | Information Science and Technology Institute – Zhengzhou – China |
کلمات کلیدی | حفاظت چندسطحی، وضعیت امنیتی شبکه، تجسم، رمزنگاری بصری، توسعه منطقه |
کلمات کلیدی انگلیسی | multilevel protection, network security situation, visualization, visual cryptography, region increment |
کد محصول | E7856 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
بخشی از متن مقاله: |
1. Introduction
In the visualization system of network security situation, confidential data protections have to face all kinds of security challenge. How to protect these data from being modified or destructed during transmission becomes an essential issue. Conventionally, confidential data can be protected by classical cryptographic methods, in other words, is the enciphering and deciphering of data and information using cipher text. Network data usually contain some confidential information such as the network topology, device configuration and service vulnerability, which is vulnerable to be the potential attackers. Besides, the situation images of network security such as the risks distribution curves, alerts change charts, threat events frequency diagrams contain sensitive information. Meanwhile, different information usually have different secrecy levels such as the devices information in Outreach access area, which is lower significant compared with the that in the DMZ area, while the devices information in the Trusted area is the most sensitive. Similarity, the historical security data is less sensitive than the real-time data. For page limitation, we just name a few. With the development of information system, XOR operation can be easily available in network communication system with low cost. Meanwhile, XOR and OR operations have the same computational complexity, which does not resist the easy-decryption principle of VCS. Therefore, using XOR operation to decode instead of OR operation is promising for network system in the near future. A (k, n) Visual cryptography scheme (VCS), proposed by Naor and Shamir [1], is an interesting cryptography scheme decoding without any complex computation. A secret image S is encoded into n shares in a (k, n)-VCS [2]. The dealer distributes them among n participants, respectively. After stacking together any k or more shares, the secret image can be recognized by human visual system directly. However, stacking less than k shares gives any no clue about the secret image. An ideal VC method should have more generalized access structure (AS), bigger contrast and smaller pixel expansion, which can provide richer application scenarios, fewer storage costs and clearer visual effects [3]. As a novel branch of VCS, the multi-regions in a secret image can be decoded region by region in the region incrementing VCS (RIVCS), which can be used to multilevel security protection. In the RIVCS, the contents in a secret image are divided into multiple regions according to the application of the dealer, where each region R is allocated with a certain secrecy level l. When decrypting, more shares can be stacked to reveal more regions. The first (2, n)-RIVCS was proposed by Wang [4] in 2009, where the secret image contains n-1 regions. By superimposing (equal to OR operation) any i (2 i n) shares, one can visually decode up to i-1 regions of the secret, but n is limited to 3, 4 and 5, and no construction method was discussed. From this aim, Shyu et al. [5] proposed an efficient construction for (2, n) scheme based on an objective optimization model for minimizing the pixel expansion. However, colors of original black and white pixels are reversed in the recovered image. The general construction method for (k, n)- RIVCS is designed by Yang et al. [6], where k and n can be any integers. Hu et al. |