مشخصات مقاله | |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 46 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
منتشر شده در | نشریه الزویر |
نوع مقاله | ISI |
عنوان انگلیسی مقاله | Consistent estimation of linear regression models using matched data |
ترجمه عنوان مقاله | برآورد مداوم مدل های رگرسیون خطی با استفاده از داده های همسان |
فرمت مقاله انگلیسی | |
رشته های مرتبط | آمار |
گرایش های مرتبط | آمار ریاضی |
مجله | مجله اقتصاد سنجی – Journal of Econometrics |
دانشگاه | Faculty of Economics – Setsunan University – Japan |
کلمات کلیدی | تصحیح تقاطع؛ استنتاج غیر مستقیم؛ رگرسیون خطی؛ برآورد تطبیقی؛ تصحیح خطای اندازه گیری |
کلمات کلیدی انگلیسی | Bias correction; indirect inference; linear regression; matching estimation; measurement error bias |
شناسه دیجیتال – doi | https://doi.org/10.1016/j.jeconom.2017.07.006 |
کد محصول | E8087 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
بخشی از متن مقاله: |
1 Introduction
Suppose that we are interested in estimating a linear regression model Y = β0 + X 0 1β1 + X 0 2β2 + Z 0 γ + u := W0 θ + u, E (u| W) = 0, (1) using a random sample, where X1 ∈ R d1 , X2 ∈ R d2 and Z ∈ R d3 . The reason for distinguishing between the regressors X1, X2 and Z will become clear shortly. In addition, while d1 = 0 is allowed, d2, d3 > 0 must be the case in our setup. When W = (1, X0 1 , X0 2 , Z0 ) 0 ∈ R d+1, where d := d1 + d2 + d3, is exogenous and a single random sample of (Y, X1, X2, Z) can be obtained, the ordinary least squares (OLS) estimator of θ = (β0, β0 1 , β0 2 , γ0 ) 0 is consistent. In reality, however, we often face the problem that (Y, X1, X2, Z) cannot be taken from a single data source. It is not uncommon that economists who use survey data for empirical analysis must collect all necessary variables from more than one source. Examples include Lusardi (1996), Bj¨orklund and J¨antti (1997), Currie and Yelowitz (2000), Dee and Evans (2003), Borjas (2004), Bover (2005), Fujii (2008), Bostic et al. (2009), and Murtazashvili et al. (2015), to name a few. Ridder and Moffitt (2007) provide an excellent survey. This is the setting in which we are interested. Specifically, suppose that instead of observing a complete data set (Y, X1, X2, Z), we have the following two overlapping subsets of data, (Y, X1, Z) and (X2, Z), i.e., some of the regressors are not available in the initial data set, where the initial data set is the one containing observations on the dependent variable along with a few other regressors. In such a setting, it is natural to construct a matched data set via exploiting the proximity of the common regressor(s) Z across the two samples. This is often called “probabilistic record linkage”. Here are two examples of the setting. |