مشخصات مقاله | |
ترجمه عنوان مقاله | پیچیدگی کلاسهای مفهومی ناشی از شبکه های گسسته مارکوف و شبکه های بیزی |
عنوان انگلیسی مقاله | Complexity of concept classes induced by discrete Markov networks and Bayesian networks |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 7 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
منتشر شده در | نشریه الزویر |
نوع نگارش مقاله | مقاله پژوهشی (Research article) |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
رشته های مرتبط | مهندسی کامپیوتر، فناوری اطلاعات |
گرایش های مرتبط | هوش مصنوعی، شبکه های کامپیوتری |
مجله | الگو شناسی – Pattern Recognition |
دانشگاه | School of Mathematics and Statistics – Xidian University – PR China |
کلمات کلیدی | شبکه های بیزی، طبقه بندی، شبکه های مارکوف، ایده آل توریک، بعد Vapnik-Chervonenkis |
کلمات کلیدی انگلیسی | Bayesian networks, Classification, Markov networks, Toric ideal, Vapnik–Chervonenkis dimension |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.patcog.2018.04.026 |
کد محصول | E8918 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
بخشی از متن مقاله: |
1. Introduction
Markov networks and Bayesian networks, also known as undirected and directed acyclic graphical models respectively, are widely used in many fields, such as machine learning and bioinformatics [8,12,22,24,25]. We know that a statistical model is a family of probability distributions, it is a (part of) real algebraic variety from the viewpoint of algebraic geometry [26]. In particular, consider discrete data, a statistical model is the set of all solutions of some polynomials in the probability simplex [15,27]. There are two ways to describe Markov networks and Bayesian networks, either by conditional independence statements or by a factorization of probability distributions. This corresponds to the computational algebraic geometry principle that some varieties can be described using either defining equations or parametric equations [see §3.3 of 9]. We know that these two representations are inequivalent for Markov networks without positivity assumptions on probability distributions [see Proposition 3.8 and Example 3.10 in 22], while these two ways are equivalent for Bayesian networks [see Theorem 3.27 in 22]. Classification is one of the main problems in machine learning. To improve classification, there has been a growing body of work ∗ Corresponding author. E-mail addresses: libc580@nenu.edu.cn (B. Li), ylyang@mail.xidian.edu.cn (Y. Yang). on Markov networks in the computer vision community [21], in social and affiliation networks [39] and in classifier learning [30]. Ghofrani et al. proposed a new probabilistic classifier based on decomposable models and applied it to two real-world internet traffic data sets [16]. Bayesian networks are another powerful tool for classification due to their simplicity and accuracy [4,6,11,13]. Naive Bayes classifiers, a special case of Bayesian network classifiers, are a popular classification tool for processing discrete data [4,34,35]. For more about discrete Bayesian network classifiers, please see a comprehensive survey published recently [3]. Several research groups combined kernel method and probabilistic models, for instance, Ben-David et al. [2], Altun et al. [1], Taskar et al. [31], Chechik et al. [5]. A major advantage of this technique is that one can construct a wide variety of more flexible classifiers. The generalization performance of a learning method is extremely important in practice, because it provides a measure of the quality of the ultimately chosen model. One can use the Vapnik– Chervonenkis (VC) dimension to construct an estimate of generalization error [32], where the VC dimension is an approach of measuring the complexity of a class of functions by assessing how wiggly its members can be [19]. Another measure of complexity of a class of functions, called Euclidean dimension, is the minimum dimension of the Euclidean space equipped with the standard dot product, into which these functions can be embedded. Given a Markov network (Bayesian network) N , one can get a concept class CN induced by it. Since VC dimension and Euclidean dimension are two important indexes to assess the classification ability of a Markov network (Bayesian network). Three natural questions arise: (1) Whether the two dimensional values can be obtained from the dimension of a model as a (smooth) sub-manifold of Euclidean space? (2) Are the two positive integer numbers always equal? (3) How to calculate these dimensional values? In this paper, we study the classification capability induced by a Markov network (Bayesian network) without considering the training data, the algorithm and the construction of the network graph. We aim to solve the three questions above. |