مقاله انگلیسی رایگان در مورد کاهش جنبه های خانوادگی در سیستم های اطلاعات تصمیم گیری – الزویر 2018

 

مشخصات مقاله
ترجمه عنوان مقاله کاهش جنبه های های مرتبط با خانواده ها در سیستم های اطلاعات تصمیم گیری پوششی پویا
عنوان انگلیسی مقاله Related families-based attribute reduction of dynamic covering decision information systems
انتشار مقاله سال 2018
تعداد صفحات مقاله انگلیسی 32 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
منتشر شده در نشریه الزویر
نوع نگارش مقاله مقاله پژوهشی (Research article)
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
رشته های مرتبط مدیریت
گرایش های مرتبط مدیریت دانش، مدیریت فناوری اطلاعات
مجله سیستم های مبتنی بر دانش – Knowledge-Based Systems
دانشگاه Changsha University of Science and Technology Changsha – China
کلمات کلیدی کاهش صفات؛ سیستم اطلاعات پویای پوششی؛ محاسبات گرانول؛ خانوادگی، مجموعه های خشن
کلمات کلیدی انگلیسی Attribute reduction; Dynamic covering information system; Granular computing; Related family; Rough sets
شناسه دیجیتال – doi
https://doi.org/10.1016/j.knosys.2018.05.019
کد محصول E9157
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

بخشی از متن مقاله:

Introduction

Covering rough set theory, pioneered by Zakowski [62] in 1983, has become a useful mathematical tool for dealing with uncertain and imprecise information in practical situations. As a substantial con- stituent of granular computing, covering-based rough set theory has been applied to many fields such as feature selection and data mining without any prior knowledge. Especially, covering rough set theory is being attracting more and more attention in the era of artificial intelligence, which provides powerful supports for the development of data processing technique. Many researchers [1, 5, 8–11, 15, 17–22, 25, 27, 28, 31, 34, 41, 42, 48–50, 52–56, 58–61, 64–69] have studied covering-based rough set theory. For example, Hu et al. [8] proposed a matrix representation of multigranulation approximations in optimistic and pessimistic multigranulation rough sets and matrixbased dynamic approaches for updating approximations in multigranulation rough sets when a single granular structure evolves over time. Lang et al. [15] presented incremental approaches to computing the second and sixth lower and upper approximations of sets in dynamic covering approximation spaces. Luo et al. [29] investigated the updating properties for dynamic maintenance of approximations when the criteria values in the set-valued decision system evolve with time and proposed two incremental algorithms for computing rough approximations with the addition and removal of criteria values. Wang et al. [49] transformed the set approximation computation into products of the type-1 and type-2 characteristic matrices and the characteristic function of the set in covering approximation spaces. Yang et al. [54] provided a new type of fuzzy covering-based rough set model by introducing the notion of fuzzy β-minimal description and generalized the model to L-fuzzy covering-based rough set which is defined over fuzzy lattices. Yang et al. [56] provided related family-based methods for computing attribute reducts and relative attribute reducts for covering rough sets, which remove superfluous attributes while keeping the approximation space of covering information system unchanged. Yao et al. [61] classified all approximation operators into element-based approximation operators, granule-based approximation operators, and subsystem-based approximation operators. Knowledge reduction of dynamic information systems [2–4,6,7,12–14,16,19,23,24,26,29,30,32,33, 35, 36, 38–40, 43–47, 51, 57, 63, 66] has attracted more attention. For example, Chen et al. [3] employed an incremental manner to update minimal elements in the discernibility matrices at the arrival of an incremental sample. Huang et al. [12] presented the extended variable precision rough set model based on the λ-tolerance relation in terms of Bhattacharyya distance and incremental mechanisms by the utilization of previously learned approximation results and region relation matrices for updating rough approximations in set-valued information systems. Lang et al. [14] focused on knowledge reduction of dynamic covering information systems with variations of objects using the type-1 and type-2 characteristic matrices. Li et al. [19] discussed the principles of updating P-dominating sets and P-dominated sets when some attributes are added into or deleted from the attribute set P. Luo et. al [30] analyzed the dynamic characteristics of conditional partition and decision classification on the universe when the insertion or deletion of objects occurs and presented incremental algorithms for updating probabilistic approximations, which are proficient to efficiently classify the incremental objects into decision regions by avoiding re-computation efforts. Qian et al.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا